14
Views
20
CrossRef citations to date
0
Altmetric
Review Article

Endotoxin, Cytokines, and Hyperlipidemia

&
Pages 97-103 | Published online: 08 Jul 2009

References

  • Raetz CRH. Biochemistry of endotoxins. Annu Rev Biochem 1990; 59: 129–70
  • Lequire V S, Hutcherson J D, Hamilton R L, Gray ME. The effects of endotoxin on lipid metabolism. I. The responses of the serum lipides of rabbits to single and repeated injections of Shear's polysaccharide. J Exp Med 1959; 110: 293–309
  • Hirsch R L, McKay D G, Travers R I, Skraly RK. Hyperlipidemia, fatty liver and bromsulfophthalein retention in rabbits injected with bacterial endotoxins. J Lipid Res 1964; 5: 563–8
  • Kaufmann R L, Matson C F, Beisel WR. Hypertriglyceridemia produced by endotoxin: role of impaired triglyceride disposal mechanisms. J Infect Dis 1976; 113: 548–55
  • Sakaguchi O, Sakaguchi S. Alterations of lipid metabolism in mice injected with endotoxin. Microbiol Immunol 1979; 23: 71–85
  • Sakaguchi S. Metabolic disorders of serum lipoproteins in endotoxin-poisoned mice: the role of high density lipoprotein (HDL) and triglyceride-rich lipoproteins. Microbiol Immunol 1982; 26: 1017–34
  • Schmahl F W, Wabnitz R W, Rox G, Drysch K, Richardt G, Poetter E. Effects of gabexate mesilate on the reactions of lipid metabolism in endotoxic shock. Adv Shock Res 1983; 9: 43–7
  • Kawakami M, Murase T, Itakura H, Yamada N, Ohsawa N, Takaku F. Lipid metabolism in endotoxic rats: decrease in hepatic triglyceride lipase activity. Microbiol Immunol 1986; 30: 849–54
  • Scholl RA., Lang C H, Bagby GJ. Hypertriglyceridemia and its relation to tissue lipoprotein lipase activity in endotoxemic, Escherichia coli bacteremic, and polymicrobial septic rats. J Surg Res 1984; 37: 394–401
  • Bagby G J, Corll C B, Martinez RR. Triacylglycerol kinetics in endotoxic rats with suppressed lipoprotein lipase activity. Am J Physiol 1987; 253: E59–64
  • Gallin J I, Kaye D, O'Leary WM. Serum lipid in infection. N Engl J Med 1969; 281: 1081–6
  • Fiser R H, Denniston J C, Beisel WR. Infection with diplococcus pneumoniae and salmonella typhimurium in monkeys: changes in plasma lipids and lipoproteins. J Infect Dis 1972; 125: 54–60
  • Kaufmann R L, Matson C F, Rowberg A H, Beisel WR. Defective lipid disposal mechanisms during infections in rhesus monkeys. Metabolism 1976; 25: 615–24
  • Lanza-Jacoby S, Lansey S C, Cleary M P, Rosato FE. Alterations in lipogenic enzymes and lipoprotein lipase activity during gram-negative sepsis in the rat. Arch Surg 1982; 117: 144–7
  • Guy MW. Serum and tissue fluid lipids in rabbits experimentally infected with trypansoma brucei. Trans R Soc Trop Med Hyg 1975; 69: 429
  • Rouzer C A, Cerami A. Hypertriglyceridemia associated with trypansoma brucei brucei infection in rabbits: role of defective triglyceride removal. Mol Biochem Parasitol 1980; 2: 31–8
  • Alvarez C, Ramos A. Lipids, lipoproteins, and apoproteins in serum during infection. Clin Chem 1986; 32: 142–5
  • Wolfe R R, Shaw J HF, Durkot MJ. Effect of sepsis on VLDL kinetics: responses in basal state and during glucose infusion. Am J Physiol 1985; 248: E732–40
  • Sammalkorpi K, Valtonen V, Kerttula Y, Nikkilä E, Taskinen MR. Changes in serum lipoprotein pattern induced by acute infection. Metabolism 1988; 37: 859–65
  • Grunfeld C, Kotler D P, Shigenaga J K, et al. Circulating inter-feron-α levels and hypertriglyceridemia in the acquired immunodeficiency syndrome. Am J Med 1991; 90: 154–62
  • Nathan CF. Secretory products of macrophages. J Clin Invest 1987; 79: 319–26
  • Beutler B, Cerami A. Tumor necrosis, cachexia, shock, and inflammation: a common mediator. Annu Rev Biochem 1988; 57: 505–18
  • Camussi G, Albano E, Tetta C, Bussolino F. The molecular action of tumor necrosis factor-α. Eur J Biochem 1991; 202: 3–14
  • Ceramí A. Inflammatory cytokines. Clin Immunol Immunopathol 1992; 62: S3–10
  • Spooner C E, Markowitz N P, Saravolatz LD. The role of tumor necrosis factor in sepsis. Clin Immunol Immunopathol 1992; 62: S11–7
  • Dinarello CA. The proinflammatory cytokines interleukin-1 and tumor necrosis factor and treatment of the septic shock syndrome. J Infect Dis 1991; 163: 1177–84
  • Tracey K, Fong Y, Hesse D G, et al. Anticachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteremia. Nature 1987; 330: 662–4
  • Beutler B, Milsark I W, Cerami A. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 1985; 229: 869–71
  • Ohlsson K, Björk P, Bergenfeldt M, Hageman R, Thompson RC. Interleukin-1 receptor antagonist reduces mortality from endotoxin shock. Nature 1990; 348: 550–2
  • Alexander H R, Doherty G M, Buresh C M, Venzon D J, Norton JA. A recombinant human receptor antagonist to interleukin 1 improves survival after lethal endotoxemia in mice. J Exp Med 1991; 173: 1029–32
  • Wakabayashi G, Gelfand J A, Burke J F, Thompson RC. A specific receptor antagonist for interleukin-1 prevents E. coli-induced shock. FASEB J 1991; 5: 338–43
  • Bilheimer DW. The lipoprotein receptor concept. Drugs 1988; 36(3)55–62, Suppl
  • Nilsson-Ehle P, Garfinkel A, Schotz MC. Lipolytic enzymes and plasma lipoprotein metabolism. Annu Rev Biochem 1980; 49: 667–93
  • Bagby G J, Corll CB. Comparison of lipoprotein lipase activity in heart myocytes and perfused heart. J Mol Cell Cardiol 1989; 21: 253–62
  • Bagby G J, Spitzer JA. Lipoprotein lipase activity in rat heart and adipose tissue during endotoxic shock. Am J Physiol 1980; 238: H325–30
  • Kawakami M, Cerami A. Studies of endotoxin-induced decrease in lipoprotein lipase activity. J Exp Med 1981; 154: 631–9
  • Bagby G J, Spitzer JA. Decreased myocardial extracellular and muscle lipoprotein lipase activities in endotoxin-treated rats. Proc Soc Exp Biol Med 1981; 168: 395–8
  • Spitzer JA. Effects of endotoxin on lipid metabolism and on adipocytes. Handbook of endotoxin. Cellular biology of endotoxin., L J Berry. Elsevier Science Publishers B.V., Amsterdam 1985; Vol 3.: 151–65
  • Hulsmann W C, Dubelaar M L, De Wit L EA, Persoon N LM. Cardiac lipoprotein lipase: effects of lipopolysaccharide and tumor necrosis factor. Mol Cell Biochem 1988; 79: 137–45
  • Griffin H D, Butterwirth SC. Effect of Eschericia coli endotoxin on tissue lipoprotein lipase activities in chickens. Br Poultry Sci 1988; 29: 371–8
  • Kawakami M, Pekala P H, Lane M D, Cerami A. Lipoprotein lipase suppression in 3H3-L1 cells by an endotoxin-induced mediator from exudate cells. Proc Natl Acad Sci USA 1982; 79: 912–6
  • Mathoney JR, Jr, Beutler B A, Trang N L, et al. Lipopoly-saccharide-treated RAW 264.7 cells produce a mediator that inhibits lipoprotein lipase suppression in 3H3-L1 cells. J Immunol 1985; 134: 1673–5
  • Beutler B, Mathoney J, Trang N LE, Pekala P, Cerami A. Purification of cachectin, a lipoprotein lipase suppressing hormone secreted by endotoxin-induced RAW 264.7 cells. J Exp Med 1985; 161: 984–95
  • Beutler B, Cerami A. Cachectin: more than a tumor necrosis factor. N Engl J Med 1987; 316: 379–85
  • Price S R, Olivecrona T, Pekala PH. Regulation of lipoprotein lipase synthesis by recombinant tumor necrosis factor—the primary regulatory role of the hormone in 3T3-L1 adipocytes. Arch Biochem Biophys 1986; 251: 738–46
  • Patton J S, Shepard H M, Wilking H, et al. Interferons and tumor necrosis factors have similar catabolic effects on 3T3-L1 cells. Proc Natl Acad Sci USA 1986; 83: 8313–7
  • Price S R, Olivecrona T, Pekala PH. Regulation of lipoprotein lipase synthesis in 3T3-L1 adipocytes by cachectin. Biochem J 1986; 240: 601–4
  • Kawakami M, Murase T, Ogawa H, et al. Human recombinant TNF suppresses lipoprotein lipase activity and stimulates lipoiysis in 3T3-L1 ceils. J Biochem 1987; 101: 331–8
  • Cornelius P, Enerback S, Bjursell G, Olivecrona T, Pekala PH. Regulation of lipoprotein lipase mRNA content in 3T3-Ll cells by tumour necrosis factor. Biochem J 1988; 249: 765–9
  • Ogawa H, Nielsen S, Kawakami M. Cachectin/tumor necrosis factor and interleukin-1 show different modes of combined effect on lipoprotein lipase activity and intracellular lipolysis in 3T3-L1 cells. Biochim Biophys Acta 1989; 1003: 131–5
  • Fried S K, Zechner R. Cachectin/tumor necrosis factor decreases human adipose tissue lipoprotein lipase mRNA levels, synthesis, and activity. J Lipid Res 1989; 30: 1917–23
  • Semb H, Peterson J, Tavernier J, Olivecrona T. Multiple effects of tumor necrosis factor on lipoprotein lipase in vivo. J Biol Chem 1987; 262: 8390–4
  • Enerbäck S, Semb H, Tavernier J, Bjursell G, Olivecrona T. Tissue-specific regulation of guinea pig lipoprotein lipase; effects of nutritional state and of tumor necrosis factor on mRNA levels in adipose tissue, heart and liver. Gene 1988; 64: 97–106
  • Beutler B A, Cerami A. Recombinant interleukin 1 suppresses lipoprotein lipase in 3T3-L1 cells. J Immunol 1985; 135: 3969–71
  • Zechner R, Newman T C, Sherry B, Cerami A, Breslow JL. Recombinant human cachectin/tumor necrosis factor but not interleukin-1-alpha down-regulates lipoprotein lipase gene expression at transcriptional level in mouse 3T3-L1 adipocyte. Mol Cell Biol 1988; 8: 2394–401
  • Kurzrock R, Rohde M F, Quesada J R, et al. Recombinant γ interferon induces hypertriglyceridemia and inhibits post-heparin lipase activity in cancer patients. J Exp Med 1986; 164: 1093–101
  • Goldberg D I, Khoo JC. Regulation of lipoprotein lipase secretion by mouse peritoneal macrophages. Biochem Biophys Res Commun 1987; 142: 1–6
  • Friedman G, Chajek-Shaul T, Gallily R, et al. Modulation of lipoprotein lipase activity in mouse peritoneal macrophages by recombinant tumor necrosis factor. Biochim Biophys Acta 1988; 963: 201–7
  • White J R, Chait A, Klebanoff S J, Deeb S, Brunzell JD. Bacterial lipopolysaccharide reduces macrophage lipoprotein lipase levels: an effect that is independent of tumor necrosis factor. J Lipid Res 1988; 29: 1379–85
  • Sopher O, Goldman R. Bacterial lipopolysaccharide suppresses the expression of lipoprotein lipase in murine macrophages: a process independent of tumor necrosis factor or interleukin 1. Immunol Lett 1987; 15: 261–5
  • Jonasson L, Hansson G K, Bondjers G, Noe L, Etienne J. Interferon-gamma inhibits lipoprotein lipase in human mono-cyte-derived macrophages. Biochim Biophys Acta 1990; 1053: 43–8
  • Querfeld U, Ong J M, Prehn J, et al. Effects of cytokines on the production of lipoprotein lipase in cultured human macrophages. J Lipid Res 1990; 31: 1379–86
  • Grunfeld C, Verdier J A, Neese R, Moser A H, Feingold KR. Mechanisms by which tumor necrosis factor stimulates hepatic fatty acid synthesis in vivo. J Lipid Res 1988; 29: 1327–35
  • Feingold K R, Adi S, Staprans I, et al. Diet affects the mechanisms by which TNF stimulates hepatic triglyceride production. Am J Physiol 1990; 259: E117–84
  • Spitzer JA. Endotoxin-induced alterations in isolated fat cells: effect on norepinephrine-stimulated lipolysis and cyclic 3′,5′-adenosine monophosphate accumulation. Proc Soc Exp Biol Med 1974; 145: 186–91
  • Starmes HF, Jr, Warren R S, Jeevanandam M, et al. Tumor necrosis factor and the acute metabolic response to tissue injury in man. J Clin Invest 1988; 82: 1321–5
  • Rivier C, Vale W, Brown M. In the rat, interleukin-1α and -β stimulate adrenocorticotropin and catecholamine release. Endocrinology 1989; 125: 3096–102
  • Spitzer J A, Fish RE. Lipolytic patterns in isolated adipocytes of continuously endotoxemic rats. Circ Shock 1986; 18: 21–9
  • Feingold K R, Soued M, Adi S, et al. Effect of interleukin-1 on lipid metabolism in the rat. Arteriosclerosis Thromb 1991; 11: 495–500
  • Spitzer J J, Bagby G J, Meszaros K, Lang CH. Alterations in lipid and carbohydrate metabolism in sepsis. J Parenter Enteral Nutr 1988; 12: 53S–8S, Suppl 6
  • Levin J, Poore T E, Young N S, et al. Gram-negative sepsis: detection of endotoxemia with the limulus test. With studies of associated changes in blood coagulation, serum lipid, and complement. Ann Intern Med 1972; 76: 1–7
  • Fiser R H, Shultz T D, Rindsig R B, Beisel WR. Alterations in plasma and brain lipid metabolism during endotoxemia in the neonatal rat. Biol Neonate 1973; 22: 155–60
  • Victorov A V, Gladkaya E M, Novikov D K, Kosykh V A, Yurkiv VA. Lipopolysaccharide toxin can directly stimulate the intracellular accumulation of lipids and their secretion into medium in the primary culture of rabbit hepatocytes. FEBS Lett 1989; 256: 155–8
  • Grunfeld C, Palladino MA. Tumor necrosis factor: immunologic, antitumor, metabolic, and cardiovascular activities. Adv Intern Med 1990; 35: 45–72
  • Freingold K R, Grunfeld C. Tumor necrosis factor-alpha stimulates hepatic lipogenesis in the rat in vivo. J Clin Invest 1987; 80: 184–90
  • Freingold K R, Serio M K, Adi S, Moser A H, Grunfeld C. Tumor necrosis factor stimulates hepatic lipid synthesis and secretion. Endocrinology 1989; 124: 2336–42
  • Freingold K R, Soued M, Serio M K, Moser A H, Dinarello C A, Grunfeld C. Multiple cytokines stimulate hepatic lipid synthesis in vivo. Endocrinology 1989; 125: 267–74
  • Grunfeld C, Adi S, Serio M K, Moser A, Fiers W, Freingold KR. Search for the mediators of the lipogenic effects of tumor necrosis factor: potential role for interleukin 6. Cancer Res 1990; 50: 4233–8
  • Krauss R M, Grunfeld C, Doerrler W T, Freingold KR. Tumor necrosis factor acutely increases plasma levels of very low density lipoproteins of normal size and composition. Endocrinology 1990; 127: 1016–21
  • Grunfeld C, Gulli R, Moser A, Gavin L A, Freingold KR. The effect of tumor necrosis factor administration in vivo on lipoprotein lipase activity in various tissues of the rat. J Lipid Res 1989; 30: 579–85
  • Chajek-Shaul T, Friedman G, Stein O, Shiloni E, Etienne J, Stein Y. Mechanism of the hypertriglyceridemia induced by tumor necrosis factor administration to rats. Biochim Biophys Acta 1989; 1001: 316–24
  • Freingold K R, Soued M, Staprans I, et al. Effect of tumor necrosis factor (TNF) on lipid metabolism in the diabetic rat. Evidence that inhibition of adipose tissue lipoprotein lipase activity is not required for TNF-induced hyperlipidemia. J Clin Invest 1989; 83: 1116–21
  • Freingold K R, Soued M, Adi S, et al. Tumor necrosis factor-increased hepatic very-low-density lipoprotein production and increased triglyceride levels in diabetic rats. Diabetes 1990; 39: 1569–74
  • Grunfeld C, Suoed M, Adi S, Moser A H, Dinarello C A, Freingold KR. Evidence for two classes of cytokines that stimulate hepatic lipogenesis: relationships among tumor necrosis factor, interleukin-1 and interferon-alpha. Endocrinology 1990; 127: 46–54
  • Delers F, Mangeney M, Raffa D, et al. Changes in rat liver mRNA for alpha-1- acid-glycoprotein, apolipoprotein E, apolipoprotein B and beta-actin after mouse recombinant tumor necrosis factor injection. Biochem Biophys Res Commun 1989; 161: 81–8
  • Grunfeld C, Dinarello C A, Freingold KR. Tumor necrosis factor-α, interleukin-1, and interferon alpha stimulate triglyceride synthesis in Hep G2 cells. Metabolism 1991; 40: 894–8
  • Grunfeld C, Soued M, Adi S, et al. Interleukin 4 inhibits stimulation of hepatic lipogenesis by tumor necrosis factor, interleukin 1, and interleukin 6 but not by interferon-o−. Cancer Res 1991; 51: 2803–7
  • Liao W, Florén CH. Endotoxins inhibit endocytotic catabolism of low density lipoproteins in Hep G2 cells. Hepatology 1992; 16: 224–31
  • Liao W, Florén CH. Endotoxin, lipoproteins and hepatic endocytosis. International Falk Symposium on Hepatic Endocytosis. Munich: W. Zuckswerdt. Verlag GmbH 1992, In press
  • Ulevitch R J, Johnston A R, Weinstein DB. New function for high density lipoproteins: their participation in intravascular reactions of bacterial lipopolysaccharides. J Clin Invest 1979; 64: 1516–24
  • Ulevitch R J, Johnston A R, Weinstein DB. New function for high density lipoproteins: isolation and characterization of a bacterial lipopolysaccharide-high density lipoprotein complex formed in rabbit plasma. J Clin Invest 1981; 67: 827–37
  • Munford R S, Hall C L, Lipton J M, Dietschy JM. Biological activity, lipoprotein-binding behavior, and in vivo disposition of extracted and native forms of Salmonella typhimurium lipopolysaccharides. J Clin Invest 1982; 70: 877–88
  • Van Lenten B J, Fogelman A M, Haberland M E, Ewards PA. The role of lipoproteins and receptor-mediated endocytosis in the transport of bacterial lipopolysaccharide. Proc Natl Acad Sci USA 1986; 83: 2704–8
  • Liao W, Florén CH. Both polysaccharide and lipid A parts of endotoxins are needed for the inhibitory effects of endotoxin on cellular LDL uptake. Scand J Clin Lab Invest 1992; 52: 183–8
  • Arthur M JP, Kowalski-Saunders P, Wright R. Effect of endotoxin on release of reactive oxygen intermediates by rat hepatic macrophages. Gastroenterology 1988; 95: 1588–94
  • Pabst M J, Johnston RB, Jr. Increased production of superoxide anion by macrophages exposed in vitro to muramyl dipeptide or lipopolysaccharide. J Exp Med 1980; 151: 101–14
  • Bautista A P, Meszaros K, Bojta J, Spitzer JJ. Superoxide anion generation in the liver during the early stage of endotoxemia in rats. J Leukocyte Biol 1990; 48: 123–8
  • Bautista A P, Schuler A, Spolarics Z, Spitzer JJ. Tumor necrosis factor-α stimulates superoxide anion generation by perfused rat liver and Kupffer cells. Am J Physiol 1991; 261: G891–5
  • Morel D W, DiCorleto P E, Chisolm GM. Modulation of endotoxin-induced endothelial cell toxicity by low density lipoprotein. Lab Invest 1986; 55: 419–26
  • Heínecke JW. Free radical modification of low-density lipoprotein: mechanisms and biological consequences. Free Radic Biol Med 1987; 3: 65–73
  • Dixon R M, Borden E C, Keim N L, et al. Decreases in serum high-density-lipoprotein cholesterol and total cholesterol resulting from naturally produced and recombinant DNA-derived leukocyte interferons. Metabolism 1984; 33: 400–4
  • Havekes L M, Schouten D, de Wit E CM, et al. Stimulation of the LDL receptor activity in the human hepatoma cell line Hep G2 by high-density serum fractions. Biochim Biophys Acta 1986; 875: 236–46
  • Havekes L M, Verbroom H, de Wit E, Yap S H, Princen H MG. Regulation of low density lipoprotein receptor activity in primary cultures of human hepatocytes by serum lipoproteins. Hepatology 1986; 6: 1356–60

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.