11
Views
38
CrossRef citations to date
0
Altmetric
Original Article

Pituitary Adenylate Cyclase-Activating Peptide is a Potent Modulator of Human Colonic Motility

, , , , &
Pages 625-632 | Received 14 Sep 1992, Accepted 04 Jan 1993, Published online: 08 Jul 2009

References

  • Miyata A, Arimura A, Dahl R R, et al. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 1989; 164: 567–74
  • Miyata A, Jiang L, Dahl R R, et al. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun 1990; 170: 643–8
  • Kimura C, Ohkubo S, Ogi K, et al. A novel peptide which stimulates adenylate cyclase: molecular cloning and characterization of the ovine and human cDNAs. Biochem Biophys Res Commun 1990; 164: 81–9
  • Lam H C, Takahashi K., Ghatei M A, Kanse S M, Polak J M, Bloom S R. Binding sites of a novel neuropeptide pituitary- PACAP Inhibits Colonic Motility 631 adenylate-cyclase-activating polypeptide in the rat brain and lung. Eur J Biochem 1990; 193: 725–9
  • Schäfer H, Schwarzhoff R, Creutzfeldt W, Schmidt W E. Characterization of a G-protein coupled receptor for pituitary adenylate cyclase activating peptide on plasma membranes from rat brain. Eur J Biochem 1991; 202: 951–8
  • Cauvin A, de Neef P, Robberecht P, Gourlet P, Arimura A, Christophe J. Properties and distribution of specific PACAP receptors in rat brain and medulla. Digestion 1990; 46: 41, Suppl 1
  • Ohtaki T, Watanabe T, Ishibashi Y, et al. Molecular identification of a receptor for pituitary adenylate cyclase activating polypeptide. Biochem Biophys Res Commun 1990; 171: 838–44
  • Gourlet P, Woussen M C, Vandermeers A, Vandermeers-Piret M C, Robberecht P, Christophe J. Pharmacological characterization of specific PACAP receptors in the rat pancreatic acinar cell line AR 4-2J. Digestion 1990; 46: 105, Suppl 1
  • Cauvin A, Buscail L, Gourlet P, et al. The novel VIP-like hypothalamic polypeptide PACAP interacts with high affinity receptors in the human neuroblastoma cell line NB-OK. Peptides 1990; 11: 773–7
  • Arimura A, Somogyvari-Vigh A, Miyata A, Mizuno K, Coy D H, Kitada C. Tissue distribution of PACAP as determined by RIA: highly abundant in rat brain and testes. Endocrinology 1991; 129: 2787–9
  • Sundler F, Ekblad E, Absood A, Hakanson R, Koves K, Arimura A. Pituitary adenylate activating peptide: a novel vasoactive intestinal peptide-like neuropeptide in the gut. Neu-roscience 1992; 46: 439–54
  • Katsoulis S, Schmidt W E, Schworer H, Creutzfeldt W. PACAP, a novel brain-gut peptide, induces contraction on the guinea pig ileum in vitro. Gastroenterology 1991; 100: A456
  • Schmidt W E, Hocker M, Katsoulis S, et al. PACAP-27 and PACAP-38-synthesis and biological activity of two novel regulatory brain-gut peptides. Digestion 1990; 46: 281, Suppl 1
  • Schwörer H, Clemens A, Katsoulis S, Köhler H, Creutzfeldt W, Schmidt W E. The novel gut-brain peptide PACAP inhibits human colonic motility in vitro. Gastroenterology 1992; 102: A511
  • Bucknell A, Whitney B. A preliminary investigation of the pharmacology of the human isolated taenia coli preparation. Br J Pharmacol 1964; 23: 164–75
  • Gagnon D J, Devroede G, Belisle S. Excitatory effects of adrenaline upon isolated preparations of human colon. Gut 1972; 13: 654–7
  • Couture R, Mizrahi J, Regoli D, Devroede G. Peptides and the human colon: an in vitro pharmacological study. Can J Physiol Pharmacol 1981; 59: 957–64
  • Waelbroeck M, Robberecht P, Coy D H, Camus J, de Neef P, Christophe J. Interaction of growth hormone-releasing factor (GRF) and 14 GRF analogs with vasoactive intestinal peptide (VIP) receptors of rat pancreas. Discovery of (N-Ac-Tyr1,D-Phe2)-GRF(l-29)-NH2 as a VIP antagonist. Endocrinology 1985; 116: 2643–9
  • Wallenstein S, Zucker C L, Fleiss J L. Some statistical methods useful in circulation research. Circ Res 1980; 47: 1–9
  • Ishii K, Chang B, Kerwin J F, Huang Z J, Murad F. NG-nitro-L-arginine: a potent inhibitor of EDRF formation. Eur J Pharmacol 1990; 176: 219–24
  • Murray K J. Cyclic AMP and mechanisms of vasodilatation. Pharmacol Ther 1990; 47: 329–45
  • Catterall W A. Neurotoxins that act on voltage sensitive sodium channels in excitable membranes. Ann Rev Pharmacol Toxicol 1980; 20: 15–43
  • Shivers B, Gores T J, Gottschall P E, Arimura A. Two high affinity binding sites for pituitary adenylate cyclase-activating polypeptide have different tissue distributions. Endocrinology 1991; 128: 3055–65
  • Burleigh D E. Motor responsiveness of proximal and distal colonic muscle layers to acetylcholine, noradrenaline, and vasoactive intestinal peptide. Dig Dis Sci 1990; 35: 617–21
  • Costa M, Furness J B, Humphreys C MS. Apamin distinguishes two types of relaxation mediated by enteric nerves in the guinea-pig gastrointestinal tract. Naunyn Schmiedebergs Arch Pharmacol 1986; 332: 79–88
  • Edwards G, Weston A H. Potassium channel openers and vascular smooth muscle relaxation. Pharmacol Ther 1990; 48: 237–58
  • Dreyer F. Peptide toxins and potassium channels. Rev Physiol Biochem Pharmacol 1990; 115: 93–136
  • Maas A JJ, den Hertog A. The effect of apamin on the smooth muscle cells of guinea-pig taenia coli. Eur J Pharmacol 1979; 58: 151–6
  • Maas A JJ, den Hertog A, Ra R, van den Akker J. The action of apamin on guinea-pig taenia caeci. Eur J Pharmacol 1980; 67: 265–74
  • Ito S, Kurokawa A, Ohga A, Ohta T, Sawabe K. Mechanical, electrical and cyclic nucleotide responses to peptide VIP and inhibitory nerve stimulation in rat stomach. J Physiol (Lond) 1990; 430: 337–53
  • Mackenzie I, Burnstock G. Evidence against vasoactive intestinal polypeptide being the non-adrenergic, non-cholinergic inhibitory transmitter released from nerves supplying the smooth muscle of the guinea-pig taenia coli. Eur J Pharmacol 1980; 67: 255–64
  • Taylor G S, Bywater R AR. Novel autonomic neurotransmitters and intestinal function. Pharmacol Ther 1989; 40: 401–38
  • Rattan S, Moummi C. Influence of stimulators and inhibitors of cyclic nucleotides on lower esophageal sphincter. J Pharmacol Exp Ther 1989; 248: 703–9
  • Szewczak S M, Behar J, Bilett G, Hillemeier C, Rhim B Y, Biancani P. VIP-induced alterations in cAMP and inositol phosphates in the lower esophageal sphincter. Am J Physiol 1990; 259: G239–44
  • Barbier A J, Lefebvre R A. Effect of 3-isobutyl-l-methyl-xanthine and zaprinast on non-adrenergic non-cholinergic relaxation in rat gastric fundus. Eur J Pharmacol 1992; 210: 315–23
  • Ho A K, Chik C L, Klein D C. Transmembrane receptor crosstalk: concurrent VIP and α1-adrenergic activation rapidly elevates pinealocyte cGMP>100-fold. Biochem Biophys Res Commun 1987; 146: 1478–84
  • Audigier S, Barberis C, Jard S. Vasoactive intestinal polypeptide increases inositol phospholipid breakdown in the rat superior cervical ganglion. Brain Res 1986; 376: 363–7
  • Moncada S, Palmer R MJ, Higgs E A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991; 43: 109–42

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.