17
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Intestinal T Lymphocytes

, , , , &
Pages 23-33 | Published online: 08 Jul 2009

References

  • Amerongen H M, Weltzin R, Mack J A, Winner L S, Michetti P, Apter F M, et al. M cell-mediated antigen transport and monoclonal IgA antibodies for mucosal immune protection. Ann NY Acad Sci 1992; 664: 18–26
  • Germain R N. MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 1994; 76: 287–99
  • von Boehmer H. Positive selection of lymphocytes. Cell 1994; 76: 219–28
  • Mosmann T R, Cherwinski H, Bond M W, Giedlin M A, Coffman R L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136: 2348–57
  • Romagnani S. Human TH1 and TH2 subsets: doubt no more. Immunol Today 1991; 12: 256–7
  • Brandtzaeg P, Halstensen T S, Kett K, Krajci P, Kvale D, Rognum T O, et al. Immunobiology and immunopathology of human gut mucosa: humoral immunity and intraepithelial lymphocytes. Gastroenterology 1989; 97: 1562–84
  • Crabbe P A, Heremans J F. Selective IgA deficiency with steatorrhea. A new syndrome. Am J Med 1967; 42: 319–26
  • Ferguson A, Murray D. Quantitation of intraepithelial lymphocytes in human jejunum. Gut 1971; 12: 988–94
  • Ferguson A, Ziegler K. Intraepithelial lymphocyte mitosis in a jejunal biopsy correlates with intraepithelial lymphocyte count, irrespective of diagnosis. Gut 1986; 27: 675–9
  • Mowat A M. Human intraepithelial lymphocytes. Springer Semin Immunopathol 1990; 12: 165–90
  • Mayer L, Shlien R. Evidence for function of la molecules on gut epithelial cells in man. J Exp Med 1987; 166: 1471–83
  • Mayer L, Eisenhardt D, Salomon P, Bauer W, Pious R, Piccinini L. Expression of class II molecules on intestinal epithelial cells in humans. Differences between normal and inflammatory bowel disease. Gastroenterology 1991; 100: 3–12
  • Deusch K, Luling F, Reich K, Classen M, Wagner H, Pfeffer K. A major fraction of human intraepithelial lymphocytes simultaneously expresses the γ/δ T cell receptor, the CD8 accessory molecule and preferentially uses the Vδ1 gene segment. Eur J Immunol 1991; 21: 1053–9
  • Deusch K, Pfeffer K, Reich K, Gstettenbauer M, Daum S, Luling F, et al. Phenotypic and functional characterization of human TCR γ/δ+ intestinal intraepithelial lymphocytes. Curr Top Microbiol Immunol 1991; 173: 279–83
  • Robijn R J, Bloemendal H, Jainandunsing S, Wiegman L J, VanBerge Henegouwen G P, Logtenberg T, et al. Phenotypic and molecular characterization of human monoclonal TCR γ/δ T-cell lines from jejunum and colon of healthy individuals. Scand J Immunol 1993; 38: 247–53
  • Chowers Y, Morzycka-Wroblewska E, Harwood J, Kagnoff M F. Molecular diversity of T cell receptor δ chains in human small intestine. Gastroenterology 1993; 104: A682
  • Meader R D, Landers D F. Electron and light microscopic observations on relationships between lymphocytes and intestinal epithelium. Am J Anat 1967; 121: 763–73
  • Bensussan Cerf N, Guy Grand D. Intestinal intraepithelial lymphocytes. Gastroenterol Clin North Am 1991; 20: 549–76
  • Marsh M N. Studies of intestinal lymphoid tissue. III. Quantitative analyses of epithelial lymphocytes in the small intestine of human control subjects and of patients with celiac sprue. Gastroenterology 1980; 79: 481–92
  • Marsh M N. Studies of intestinal lymphoid tissue. IV. The predictive value of raised mitotic indices among jejunal epithelial lymphocytes in the diagnosis of gluten-sensitive enteropathy. J Clin Pathol 1982; 35: 517–25
  • Taunk J, Roberts A I, Ebert E C. Spontaneous cytotoxicity of human intraepithelial lymphocytes against epithelial cell tumors. Gastroenterology 1992; 102: 69–75
  • Sydora B C, Mixter P F, Holcombe H R, Eghtesady P, Williams K, Amaral M C, et al. Intestinal intraepithelial lymphocytes are activated and cytolytic but do not proliferate as well as other T cells in response to mitogenic signals. J Immunol 1993; 150: 2179–91
  • Bensussan Cerf N, Schneeberger E E, Bhan A K. Immunohistologic and immunoelectron microscopic characterization of the mucosal lymphocytes of human small intestine by the use of monoclonal antibodies. J Immunol 1983; 130: 2615–22
  • Bensussan Cerf N, Grand Guy D, Griscelli C. Intraepithelial lymphocytes of human gut: isolation, characterisation and study of natural killer activity. Gut 1985; 26: 81–8
  • Greenwood J H, Austin L L, Dobbins W O. In vitro characterization of human intestinal intraepithelial lymphocytes. Gastroenterology 1983; 85: 1023–35
  • Dobbins W O. Human intestinal intraepithelial lymphocytes. Gut 1986; 27: 972–85
  • Podack E R, Hengartner H, Lichtenheld M G. A central role of perforin in cytolysis?. Annu Rev Immunol 1991; 9: 129–57
  • Russell G J, Anderson Nagler C, Anderson P, Bhan A K. Cytotoxic potential of intraepithelial lymphocytes (IELs). Presence of TIA-1, the cytolytic granule-associated protein, in human IELs in normal and diseased intestine. Am J Pathol 1993; 143: 350–4
  • Tian Q, Streuli M, Saito H, Schlossman S F, Anderson P. A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell 1991; 67: 629–39
  • Guy Grand D, Seris Malassis M, Briottet C, Vassalli P. Cytotoxic differentiation of mouse gut thymodependent and independent intraepithelial T lymphocytes is induced locally. Correlation between functional assays, presence of perforin and granzyme transcripts, and cytoplasmic granules. J Exp Med 1991; 173: 1549–52
  • Ohno H, Aoe T, Ra C, Yamamoto T, Saito T. TCR isoform containing the Fc receptor gamma chain exhibits structural and functional differences from isoform containing CD3ζ. Int Immunol 1993; 5: 1403–11
  • Malissen M, Gillet A, Rocha B, Tracy J, Vivier E, Boyer C, et al. T cell development in mice lacking the CD3ζ gene. EMBO J 1993; 12: 4347–55
  • Ohno H, Aoe T, Taki S, Kitamura D, Ishida Y, Rajewsky K, et al. Developmental and functional impairment of T cells in mice lacking CD3ζ chains. EMBO J 1993; 12: 4357–66
  • Liu C P, Ueda R, She J, Sancho J, Wang B, Weddell G, et al. Abnormal T cell development in CD3ζ- mutant mice and identification of a novel T cell population in the intestine. EMBO J 1993; 12: 4863–75
  • Jany A, Bensussan Cerf N, Brousse N, Grand Guy D, Muzeau F, Potet F. Same peculiar subset of HML1 + lymphocytes present within normal intestinal epithelium is associated with tumoral epithelium of gastrointestinal carcinomas. Gut 1988; 29: 1632–8
  • Malizia G, Trejdosiewicz L K, Wood G M, Howdle P D, Janossy G, Losowsky M S. The microenvironment of coeliac disease: T cell phenotypes and expression of the T2 'T blast' antigen by small bowel lymphocytes. Clin Exp Immunol 1985; 60: 437–46
  • Ebert E C, Roberts Al, Brolin R E, Raska K. Examination of the low proliferative capacity of human jejunal intraepithelial lymphocytes. Clin Exp Immunol 1986; 65: 148–57
  • Ebert E C. Proliferative responses of human intraepithelial lymphocytes to various T-cell stimuli. Gastroenterology 1989; 97: 1372–81
  • Schreiber S, MacDermott R P, Raedler A, Pinnau R, Bertovich M J, Nash G S. Increased activation of isolated intestinal lamina propria mononuclear cells in inflammatory bowel disease. Gastroenterology 1991; 101: 1020–30
  • Ley K, Gaehtgens P, Fennie C, Singer M S, Lasky L A, Rosen S D. Lectin-like cell adhesion molecule 1 mediates leukocyte rolling in mesenteric venules in vivo. Blood 1991; 77: 2553–5
  • von Andrian U H, Chambers J D, McEvoy L M, Bargatze R F, Arfors K E, Butcher E C. Two-step model of leukocyte-endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte β2 integrins in vivo. Proc Natl Acad Sci USA 1991; 88: 7538–42
  • Springer T A. The sensation and regulation of interactions with the extracellular environment: the cell biology of lymphocyte adhesion receptors. Annu Rev Cell Biol 1990; 6: 359–402
  • Springer T A. Adhesion receptors of the immune system. Nature 1990; 346: 425–34
  • Larson R S, Springer T A. Structure and function of leukocyte integrins. Immunol Rev 1990; 114: 181–217
  • Cepek K L, Parker C M, Madara J L, Brenner M B. Integrin α4/β7 mediates adhesion of T lymphocytes to epithelial cells. J Immunol 1993; 150: 3459–70
  • Bensussan Cerf N, Jarry A, Brousse N, Grospierre Lisowska B, Grand Guy D, Griscelli C. A monoclonal antibody (HML-1) defining a novel membrane molecule present on human intestinal lymphocytes. Eur J Immunol 1987; 17: 1279–85
  • de Fougerolles A R, Springer T A. Intercellular adhesion molecule 3, a third adhesion counter-receptor for lymphocyte function-associated molecule 1 on resting lymphocytes. J Exp Med 1992; 175: 185–90
  • Bevilacqua M P. Endothelial-leukocyte adhesion molecules. Annu Rev Immunol 1993; 11: 767–804
  • Ruegg C, Postigo A A, Sikorski E E, Butcher E C, Pytela R, Erie D J. Role of integrin α4/β7 in lymphocyte adherence to fibronectin and VCAM-1 and in homotypic cell clustering. J Cell Biol 1992; 117: 179–89
  • Berlin C, Berg E L, Briskin M J, Andrew D P, Kilshaw P J, Holzmann B, et al. α4/β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 1993; 74: 185–92
  • Hamann A, Westrich Jablonski D, Duijvestijn A, Butcher E C, Baisch H, Harder R, et al. Evidence for an accessory role of LFA-1 in lymphocyte-high endothelium interaction during homing. J Immunol 1988; 140: 693–9
  • Mackay C R, Marston W L, Dudler L, Spertini O, Tedder T F, Hein W R. Tissue-specific migration pathways by phenotypically distinct subpopulations of memory T cells. Eur J Immunol 1992; 22: 887–95
  • Correa I, Bix M, Liao N S, Zijlstra M, Jaenisch R, Raulet D. Most γ/δ T cells develop normally in β2-microglobulin-deficient mice. Proc Natl Acad Sci USA 1992; 89: 653–7
  • Panja A, Blumberg R S, Balk S P, Mayer L. CD1d is involved in T cell-intestinal epithelial cell interactions. J Exp Med 1993; 178: 1115–9
  • Barrett T A, Delvy M L, Kennedy D M, Lefrancois L, Matis L A, Dent A L, et al. Mechanism of self-tolerance of γ/δ T cells in epithelial tissue. J Exp Med 1992; 175: 65–70
  • Barrett T A, Tatsumi Y, Bluestone J A. Tolerance of T cell receptor γ/δ cells in the intestine. J Exp Med 1993; 177: 1755–62
  • Lefrancois L, LeCorre R, Mayo J, Bluestone J A, Goodman T. Extrathymic selection of TCR γ/δ+ T cells by class II major histocompatibility complex molecules. Cell 1990; 63: 333–40
  • Schleussner C, Ceredig R. Analysis of intraepithelial lymphocytes from major histocompatibility complex (MHC)-deficient mice: no evidence for a role of MHC class II antigens in the positive selection of V δ4+ γ/δ T cells. Eur J Immunol 1993; 23: 1615–22
  • Spencer J, Isaacson P G, Diss T C, MacDonald T T. Expression of disulflde-linked and non-disulfide-linked forms of the T cell receptor γ/δ heterodimer in human intestinal intraepithelial lymphocytes. Eur J Immunol 1989; 19: 1335–8
  • Halstensen T S, Scott H, Brandtzaeg P. Intraepithelial T cells of the TcR γ/δ+ CD8- and γ/δ+ phenotypes are increased in coeliac disease. Scand J Immunol 1989; 30: 665–72
  • Janeway C A, Jr, Jones B, Hayday A. Specificity and function of T cells bearing γ/δ receptors. Immunol Today 1988; 9: 73–6
  • van Kaer L, Wu M, Ichikawa Y, Ito K, Bonneville M, Rosenberg Ostrand S, et al. Recognition of MHC TL gene products by γ/δ T cells. Immunol Rev 1991; 120: 89–115
  • Moretta L, Ciccone E, Ferrini S, Pelicci P G, Mingari M C, Zeromski J, et al. Molecular and cellular analysis of human T lymphocytes expressing γ/δ T-cell receptor. Immunol Rev 1991; 120: 117–35
  • Porcelli S, Brenner M B, Band H. Biology of the human γ/δ T-cell receptor. Immunol Rev 1991; 120: 137–83
  • Lefrancois L. Phenotypic complexity of intraepithelial lymphocytes of the small intestine. J Immunol 1991; 147: 1746–51
  • Jarry A, Bensussan Cerf N, Brousse N, Selz F, Grand Guy D. Subsets of CD3+ (T cell receptor γ/δ or γ/δ) and CD3-lymphocytes isolated from normal human gut epithelium display phenotypical features different from their counterparts in peripheral blood. Eur J Immunol 1990; 20: 1097–103
  • James P J. The role of lymphokines and cytokines in mucosal immune function. Curr Opin in Gastroenterol 1991; 7: 437–45
  • Paul W E, Seder R A. Lymphocyte responses and cytokines. Cell 1994; 76: 241–51
  • Kishimoto T, Taga T, Akira S. Cytokine signal transduction. Cell 1994; 76: 253–62
  • Wershill B K. Immune mediators and cytokines in gastrointestinal inflammation. Curr Opin in Gastroenterol 1992; 8: 975–82
  • Radema S A, van Deventer S J, Cerami A. Interleukin 1β is expressed predominantly by enterocytes in experimental colitis. Gastroenterology 1991; 100: 1180–6
  • Kagnoff M F. Immunology of the intestinal tract. Gastroenterology 1993; 105: 1275–80
  • Yamamoto M, Fujihashi K, Beagley K W, McGhee J R, Kiyono H. Cytokine synthesis by intestinal intraepithelial lymphocytes. Both γ/δ T cell receptor-positive and α/β T cell receptor-positive T cells in the G1 phase of cell cycle produce IFNγ and IL-5. J Immunol 1993; 150: 106–14
  • Watanabe Y, Sudo T, Minato N, Ohnishi A, Katsura Y. Interleukin 7 preferentially supports the growth of γ/δ T cell receptor-bearing T cells from fetal thymocytes in vitro. Int Immunol 1991; 3: 1067–75
  • Le P T, Lazorick S, Whichard L P, Haynes B F, Singer K H. Regulation of cytokine production in the human thymus: epidermal growth factor and transforming growth factor alpha regulate mRNA levels of interleukin 1 alpha (IL-1α), IL-β and IL-6 in human thymic epithelial cells at a post-transcriptional level. J Exp Med 1991; 174: 1147–57
  • Lin T, Matsuzaki G, Kenai H, Nakamura T, Nomoto K. Thymus influences the development of extrathymically derived intestinal intraepithelial lymphocytes. Eur J Immunol 1993; 23: 1968–74
  • Rocha B, von Boehmer H, Grand Guy D. Selection of intraepithelial lymphocytes with CD8 α/α co-receptors by self-antigen in the murine gut. Proc Natl Acad Sci USA 1992; 89: 5336–40
  • MacDonald T T, Spencer J. Evidence that activated mucosal T cells play a role in the pathogenesis of enteropathy in human small intestine. J Exp Med 1988; 167: 1341–9
  • MacDonald T T, Hutchings P, Choy M Y, Murch S, Cooke A. Tumour necrosis factor-a and interferon-γ production measured at the single cell level in normal and inflamed human intestine. Clin Exp Immunol 1990; 81: 301–5
  • Evans C M, Phillips A D, Smith Walker JA, MacDonald T T. Activation of lamina propria T cells induces crypt epithelial proliferation and goblet cell depletion in cultured human fetal colon. Gut 1992; 33: 230–5
  • Vassali P. The pathophysiology of tumor necrosis factor. Annu Rev Immunol 1992; 10: 411–52
  • Derkx B, Taminiau J, Radema S, Stronkhorst A, Wortel C, Tytgat G, et al. Tumor necrosis factor antibody treatment in Crohn's disease. The Lancet 1993; 342: 173–4
  • Toyonaga B, Yoshikai Y, Vadasz V, Chin B, Mak T W. Organization and sequences of the diversity, joining, and constant region genes of the human T-cell receptor beta chain. Proc Natl Acad Sci USA 1985; 82: 8624–8
  • Toyonaga B, Mak T W. Genes of the T-cell antigen receptor in normal and malignant T cells. Annu Rev Immunol 1987; 5: 585–620
  • Roman-Roman S, Ferradini L, Azocar J, Genevee C, Hercend T, Triebel F. Studies on the human T cell receptor α/β variable region genes. I. Identification of seven additional Vα subfamilies and fourteen Jα gene segments. Eur J Immunol 1991; 21: 927–33
  • Davis M M, Bjorkman P J. T-cell antigen receptor genes and T-cell recognition. Nature 1988; 334: 395–402
  • Clevers H, Alarcon B, Wileman T, Terhorst C. The T cell receptor/CD3 complex: a dynamic protein ensemble. Annu Rev Immunol 1988; 6: 629–62
  • Marrack P, Kappler J. The antigen-specific, major histocompatibility complex-restricted receptor on T cells. Adv Immunol 1986; 38: 1–30
  • Marrack P, Kappler J. The staphylococcal enterotoxins and their relatives. Science 1990; 248: 705–11
  • Itohara S, Farr A G, Lafaille J J, Bonneville M, Takagaki Y, Haas W, et al. Homing of a γ/δ thymocyte subset with homogeneous T-cell receptors to mucosal epithelia. Nature 1990; 343: 754–7
  • Asarnow D M, Goodman T, Lefrancois L, Allison J P. Distinct antigen receptor repertoires of two classes of murine epithelium-associated T cells. Nature 1989; 341: 60–2
  • Kyes S, Carew E, Carding S R, Janeway C AJ, Hayday A. Diversity in T-cell receptor gene usage in intestinal epithelium. Proc Natl Acad Sci USA 1989; 86: 5527–31
  • Takagaki Y, DeCloux A, Bonneville M, Tonegawa S. Diversity of γ/δ T-cell receptors on murine intestinal intra-epithelial lymphocytes. Nature 1989; 339: 712–4
  • Balk S P, Ebert E C, Blumenthal R L, McDermott F V, Wucherpfennig K W, Landau S B, et al. Oligoclonal expansion and CD1 recognition by human intestinal intraepithelial lymphocytes. Science 1991; 253: 1411–5
  • Van Kerckhove C, Russell G J, Deusch K, Reich K, Bhan A K, DerSimonian H, et al. Oligoclonality of human intestinal intraepithelial T cells. J Exp Med 1992; 175: 57–63
  • Blumberg R S, Yockey C E, Gross G G, Ebert E C, Balk S P. Human intestinal intraepithelial lymphocytes are derived from a limited number of T cell clones that utilize multiple Vβ T cell receptor genes. J Immunol 1993; 150: 5144–53
  • Fichtelius K E. The gut epithelium—a first level lymphoid organ?. Exp Cell Res 1968; 49: 87–104
  • Mayrhofer G. Thymus-dependent and thymus-independent subpopulations of intestinal intraepithelial lymphocytes: a granular subpopulation of probable bone marrow origin and relationship to mucosal mast cells. Blood 1980; 55: 532–5
  • Mayrhofer G, Whately R J. Granular intraepithelial lymphocytes of the rat small intestine. I. Isolation, presence in T lymphocyte-deficient rats and bone marrow origin. Int Arch Allergy Appl Immunol 1983; 71: 317–27
  • Klein J R. Ontogeny of the Thy-1-, Lyt-2+ murine intestinal intraepithelial lymphocyte. Characterization of a unique population of thymus-independent cytotoxic effector cells in the intestinal mucosa. J Exp Med 1986; 164: 309–14
  • Mosley R L, Styre D, Klein J R. Differentiation and functional maturation of bone marrow-derived intestinal epithelial T cells expressing membrane T cell receptor in athymic radiation chimeras. J Immunol 1990; 145: 1369–75
  • De Geus B, Van den Enden M, Coolen C, Nagelkerken L, Van der Heijden P, Rozing J. Phenotype of intraepithelial lymphocytes in euthymic and athymic mice: implications for differentiation of cells bearing a CD3-associated γ/δ T cell receptor. Eur J Immunol 1990; 20: 291–8
  • Bandeira A, Itohara S, Bonneville M, Defranoux Burlen O, Santos Mota T, Coutinho A, et al. Extrathymic origin of intestinal intraepithelial lymphocytes bearing T-cell antigen receptor γ/δ. Proc Natl Acad Sci USA 1991; 88: 43–7
  • Grand Guy D, Cerf Bensussan N, Malissen B, Serfs Malassis M, Briottet C, Vassalli P. Two gut intraepithelial CD8+ lymphocyte populations with different T cell receptors: a role for the gut epithelium in T cell differentiation. J Exp Med 1991; 173: 471–81
  • Rocha B, Vassalli P, Grand Guy D. The Vβ repertoire of mouse gut homodimeric α CD8+ intraepithelial T cell receptor α/β+ lymphocytes reveals a major extrathymic pathway of T cell differentiation. J Exp Med 1991; 173: 483–6
  • Whetsell M, Mosley R L, Whetsell L, Schaefer F V, Miller K S, Klein J R. Rearrangement and junctional-site sequence analyses of T-cell receptor γ genes in intestinal intraepithelial lymphocytes from murine athymic chimeras. Mol Cell Biol 1991; 11: 5902–9
  • Mosley R L, Klein J R. Repopulation kinetics of intestinal intraepithelial lymphocytes in murine bone marrow radiation chimeras. Transplantation 1992; 53: 868–74
  • Guy Grand D, Vanden Broecke C, Briottet C, Serfs Malassis M, Selz F, Vassalli P. Different expression of the recombination activity gene RAG-1 in various populations of thymocytes, peripheral T cells and gut thymus-independent intraepithelial lymphocytes suggests two pathways of T cell receptor rearrangement. Eur J Immunol 1992; 22: 505–10
  • Poussier P, Edouard P, Lee C, Binnie M, Julius M. Thymus-independent development and negative selection of T cells expressing T cell receptor α/β in the intestinal epithelium: evidence for distinct circulation patterns of gut-and thymus-derived T lymphocytes. J Exp Med 1992; 176: 187–99
  • Mosley R L, Klein J R. Peripheral engraftment of fetal intestine into athymic mice sponsors T cell development: direct evidence for thymopoietic function of murine small intestine. J Exp Med 1992; 176: 1365–73
  • Rocha B, Vassalli P, Grand Guy D. The extrathymic T-cell development pathway. Immunol Today 1992; 13: 449–54
  • Jarry A, Bensussan Cerf N, Brousse N, Selz F, Grand Guy D. Subsets of CD3+ (T cell receptor α/β or γ/δ) and CD3-lymphocytes isolated from normal human gut epithelium display phenotypical features different from their counterparts in peripheral blood. Eur J Immunol 1990; 20: 1097–103
  • Lefrancois L. Extrathymic differentiation of intraepithelial lymphocytes: generation of a separate and unequal T-cell repertoire?. Immunol Today 1991; 12: 436–8
  • Poussier P, Julius M. Maturation of T cells in the intestinal epithelium. Immunol Today 1993; 14: 140–1
  • Chase M W. Inhibition of experimental drug allergy by prior feeding of sensitizing agent. Proc Soc Exp Biol Med 1946; 61: 257–9
  • Van Hoogstraten I M, Andersen K E, Von Blomberg B M, Boden D, Bruynzeel D P, Burrows D, et al. Reduced frequency of nickel allergy upon oral nickel contact at an early age. Clin Exp Immunol 1991; 85: 441–5
  • Fujihashi K, Taguchi T, Aicher W K, McGhee J R, Bluestone J A, Eldridge J H, et al. Immunoregulatory functions for murine intraepithelial lymphocytes: γ/δ T cell receptor-positive (TCR+) T cells abrogate oral tolerance, while α/β TCR+ T cells provide B cell help. J Exp Med 1992; 175: 695–707
  • Miller A, Lider O, Roberts A B, Sporn M B, Weiner H L. Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor beta after antigen-specific triggering. Proc Natl Acad Sci USA 1992; 89: 421–5
  • Khoury S J, Hancock W W, Weiner H L. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with down-regulation of inflammatory cytokines and differential upregulation of transforming growth factor β, interleukin 4, and prostaglandin E expression in the brain. J Exp Med 1992; 176: 1355–64
  • Whitacre C C, Gienapp I E, Orosz C G, Bitar D M. Oral tolerance in experimental autoimmune encephalomyelitis. III. Evidence for clonal anergy. J Immunol 1991; 147: 2155–63

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.