42
Views
22
CrossRef citations to date
0
Altmetric
Original Article

Ammonia and Glutamine Metabolism During Liver Insufficiency: The Role of Kidney and Brain in Interorgan Nitrogen Exchange

, &
Pages 61-77 | Published online: 08 Jul 2009

References

  • Zieve L. Pathogenesis of hepatic encephalopathy. Metab Brain Dis 1987; 2: 147–65
  • Meijer A J, Lamers W H, Chamuleau R AFM. Nitrogen metabolism and ornithine cycle function. Physiol Rev 1990; 70: 701–48
  • Duffy T E, Plum F. Hepatic encephalopathy. The liver: biology and pathobiology, I Arias, H Popper, D Schachter, D A Shafritz. Raven Press, New York 1982; 693–715
  • Rudman D, DiFulco T J, Galambos J T, Smith R B, Salam A A, Warren W D. Maximal rates of excretion and synthesis of urea in normal and cirrhotic subjects. J Clin Invest 1973; 52: 2241–9
  • Haüssinger D, Kaiser S, Stehle T, Gerok W. Structural and functional organization of hepatic ammonia metabolism: pathophysiological consequences. Advances in ammonia metabolism and hepatic encephalopathy, P B Soeters, J HP Wilson, A J Meijer, E A Holm. Excerpta Medica, Amsterdam 1988; 26–36
  • Kaiser S, Gerok W, Haüssinger D. Ammonia and glutamine metabolism in human liver slices: new aspects on the pathogenesis of hyperammonemia in chronic liver disease. Eur J Clin Invest 1988; 18: 535–42
  • Deutz N EP, Dejong C HC, Soeters P B. Ammonia and glutamine metabolism during liver insufficiency: the muscle gut liver axis. It J Gastroenterol 1993; 25: 79–86
  • Deutz N EP, Dejong C HC, Reijven P LM, Soeters P B. In vivo ammonia and glutamine flux measurements during hyperammonemia in rats and pigs. Progress in hepatic encephalopathy and metabolic nitrogen exchange, F Bengtsson, B Jeppsson, T Almdal, H Vilstrup. CRC Press, Boca Raton 1991; 329–39
  • Dejong C HC, Kampman M T, Deutz N EP, Soeters P B. Altered glutamine metabolism in rat portal drained viscera and hindquarter. Gastroenterology 1992; 102: 936–48
  • Dejong C HC. Ammonia and glutamine metabolism during liver failure. Thesis, Maastricht, The Netherlands 1993
  • Dejong C HC, Deutz N EP, Soeters P B. Muscle ammonia and glutamine exchange during chronic liver insufficiency in the rat. J Hepatol 1994; 21: 299–307
  • Dejong C HC, Deutz N EP, Soeters P B. Intestinal glutamine and ammonia metabolism during chronic hyperammonemia induced by liver insufficiency. Gut 1993; 34: 1112–9
  • Dejong C HC, Deutz N EP, Soeters P B. Renal ammonia metabolism during subacute, mild and acute, severe liver insufficiency-induced hyperammonemia in the rat. J Clin Invest 1993; 92: 2834–40
  • Dejong C HC, Deutz N EP, Soeters P B. Metabolic adaptation of the kidney to hyperammonemia during chronic liver insufficiency in the rat. Hepatology 1993; 18: 890–902
  • Dejong C HC, Kampman M T, Deutz N EP, Soeters P B. Cerebral cortex ammonia and glutamine metabolism during liver insufficiency-induced hyperammonemia in the rat. J Neurochem 1992; 59: 1071–9
  • Dejong C HC, Deutz N EP, Soeters P B. Cerebral cortex ammonia and glutamine metabolism in two rat models of chronic liver insufficiency-induced hyperammonemia: influence of pair-feeding. J Neurochem 1993; 60: 1047–57
  • Newsholme E A, Leech A R. Biochemistry for the medical sciences. John Wiley & Sons, New York 1983
  • Halperin M L, Kamel K S, Ethier J H, Stinebaugh B J, Jungas R L. Biochemistry and physiology of ammonium excretion. The kidney: physiology and pathophysiology, D W Seldin, G Giebisch. Raven Press, New York 1992
  • Good D W, Knepper M A. Ammonia excretion: the role of the renal medulla. Sem Nephrol 1990; 10: 166–73
  • Kikeri D, Sun A, Zeidel M L, Hebert S C. Cellular NH4+/K+ transport pathways in mouse medullary thick limb of Henle. Regulation by intracellular pH. J Gen Physiol 1992; 99: 435–61
  • Lockwood A H, Finn R D, Campbell J A, Richman T B. Factors that affect the uptake of ammonia by the brain: the blood-brain pH gradient. Brain Res 1980; 181: 259–66
  • Lin S, Raabe W. Ammonia intoxication: effects on cerebral cortex and spinal cord. J Neurochem 1985; 44: 1252–8
  • Lockwood A H, McDonald J M, Reiman R E, Gelbard A S, Laughlin J S, Duffy T E, et al. The dynamics of ammonia metabolism in man. Effects of liver disease and hyperammonemia. J Clin Invest 1979; 63: 449–60
  • Lacey J M, Wilmore D W. Is glutamine a conditionally essential amino acid?. Nutr Rev 1990; 48: 297–309
  • Souba W W, Smith R J, Wilmore D W. Glutamine metabolism by the intestinal tract. JPEN 1985; 9: 608–17
  • Windmueller H G. Glutamine utilization by the small intestine. Adv Enzyme 1982; 53: 210–37
  • Windmueller H G, Spaeth A E. Uptake and metabolism of plasma glutamine by the small intestine. J Biol Chem 1974; 249: 5070–9
  • Souba W W. Interorgan ammonia metabolism in health and disease: a surgeon's view. JPEN 1987; 11: 569–79
  • Halperin M L, Ethier J H, Kamel K S. The excretion of ammonium ions and acid base balance. Clin Biochem 1990; 23: 185–8
  • Souba W W, Klimberg V S, Plumley D A, Salloum R M, Flynn T C, Bland K I, et al. The role of glutamine in maintaining a healthy gut and supporting the metabolic response to injury and infection. J Surg Res 1990; 48: 383–91
  • Rennie M J, Hundal H S, Babij P, MacLennan P, Taylor P M, Watt P W. Characteristics of a glutamine carrier in skeletal muscle have important conseuences for nitrogen loss in injury, infection, and chronic disease. Lancet 1986; ii: 1008–11
  • Robinson A B, Robinson L R. Distribution of glutamine and asparagine residues and their near neighbors in peptides and proteins. Proc Natl Acad Sci USA 1991; 88: 8880–4
  • van der Hulst R RWJ, Van Kreel B K, von Meyenfeldt M F, Brummer R JM, Arends J W, Deutz N EP, et al. Glutamine and the preservation of gut integrity. Lancet 1993; 341: 1363–5
  • van der Hulst R RWJ, Deutz N EP, von Meyenfeldt M F, Elbers J MH, Stockbrügger R W, Soeters P B. Decrease of mucosal glutamine concentration in the nutritionally depleted patient. Clin Nutr 1994; 13: 228–33
  • Wilmore D W. Glutamine and the gut (editorial). Gastroenterology 1994; 107: 1885–6
  • Pape H C, Dwenger A, Regel G, Auf'M'Kolck M, Gollub F, Wisner D, et al. Increased gut permeability after multiple trauma. Br J Surg 1994; 81: 850–2
  • Shoda R, Mahalanabis D, Wahed M A, Albert M J. Bacterial translocation in the rat model of lectin induced diarrhoea. Gut 1995; 36: 379–81
  • Souba W W, Herskowotz K, Klimberg V S, Salloum R M, Plumley D A, Flynn T C, et al. The effects of sepsis and endotoxemia on gut glutamine metabolism. Ann Surg 1990; 211: 543–51
  • Austgen T R, Chen M K, Dudrick P S, Copeland E M, Souba W W. Cytokine regulation of intestinal glutamine utilization. Am J Surg 1992; 163: 174–5
  • Sedman P, Macfie J, Sagar P, Mitchell C J, May J, Mancey-Jones B, et al. The prevalence of gut translocation in humans. Gastroenterology 1994; 107: 643–9
  • Wilmore D W, Smith R J, O'Dwyer S T, Jacobs D O, Ziegler T R, Wang X D. The gut: a central organ after surgical stress. Surgery 1988; 104: 917–23
  • Braga M, Gianotti L, Constantini E, DiFranscesco A, Socci C, Paganelli G, et al. Impact of enteral nutrition on intestinal bacterial translocation and mortality in burned mice. Clin Nutr 1994; 13: 256–61
  • Ardawi M SM, Newsholme E A. Glutamine metabolism in lymphocytes of the rat. Biochem J 1983; 212: 835–42
  • Deutz N EP, Reijven P LM, Athanasas G, Soeters P B. Postoperative changes in hepatic, intestinal, splenic and muscle fluxes of amino acids and ammonia in pigs. Clin Sci 1992; 83: 607–14
  • Juretic A, Spagnoli G C, Horig H, Babst R, von Bremen K, Harder F, et al. Glutamine requirements in the generation of lymphokine activated killer cells. Clin Nutr 1994; 13: 42–9
  • Calder P C. Glutamine and the immune system. Clin Nutr 1994; 13: 2–8
  • Dejong C HC, Deutz N EP, Heeneman S, Buurman W A. Glutamine and the immune system. Clin Nutr 1994; 13: 326–8, (letter to the editor)
  • O'Dwyer S T, Smith R J, Hwang T L, Wilmore D W. Maintenance of small bowel mucosa with glutamine-enriched parenteral nutrition. JPEN 1989; 13: 579–85
  • Jacobs D O, Evans D A, Mealy K, O'Dwyer S T, Smith R J, Wilmore D W. Combined effects of glutamine and epidermal growth factor on the rat intestine. Surgery 1988; 104: 358–64
  • Klimberg V S, Salloum R M, Kasper M, Plumley D A, Dolson D J, Hautamaki W R, et al. Oral glutamine accelerates healing of the small intestine and improves outcome after whole abdominal radiation. Arch Surg 1990; 125: 1040–5
  • van der Hoof J A, Blackwood D J, Mahammadpour H, Park J HY. Effects of oral supplementation of glutamine on small intestinal mucosal mass following resection. J Am Coll Nutr 1992; 11: 223–7
  • Tamada H, Nezu R, Matsuo Y, Imamura I, Takagi Y, Okada A. Alanyl glutamine-enriched total parenteral nutrition restores intestinal adaptation after either proximal or distal massive resection in rats. JPEN 1993; 17: 236–42
  • Tremel H, Kienle B, Weilemann L S, Stehle P, Furst P. Glutamine dipeptide supplemented parenteral nutrition maintains intestinal function in the critically ill. Gastroenterology 1994; 107: 1595–601
  • Scheppach W, Loges C, Bartram P, Christl S U, Richter F, Dusel G, et al. Effect of free glutamine and alanyl-glutamine dipeptide on mucosal proliferation of the human ileum and colon. Gastroenterology 1994; 107: 429–34
  • Butterworth R F. Pathophysiology of hepatic encephalopathy; the ammonia hypothesis revisited. Progress in hepatic encephalopathy and metabolic nitrogen exchange, F Bengtson, T Almdal, B Jeppsson, H Vilstrup. CRC Press, Boca Raton 1991; 9–24
  • Record C O. Neurochemistry of hepatic encephalopathy. Gut 1991; 32: 1261–3
  • Sherlock S. Diseases of the liver and biliary system. 8th ed. Blackwell, Oxford 1989
  • Gjedde A, Lockwood A H, Duffy T E, Plum F. Cerebral blood flow and metabolism in chronically hyperammonemic rats: effect of an acute ammonia challenge. Ann Neurol 1978; 3: 325–30
  • Cooper A JL, Plum F. Biochemistry and physiology of brain ammonia. Physiol Rev 1987; 67: 440–519
  • Waniewski R A. Physiological levels of ammonia regulate glutamine synthesis from extracellular glutamate in astrocyte cultures. J Neurochem 1992; 58: 167–74
  • Cooper A JL, Mora S N, Cruz N F, Gelbard A S. Cerebral ammonia metabolism in hyperammonemic rats. J Neurochem 1985; 44: 1716–23
  • Lund P. A radiochemical assay for glutamine synthetase, and activity of the enzyme in rat tissues. Biochem J 1970; 118: 35–9
  • Norenberg M D, Martinez-Hernandez A. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 1979; 161: 303–10
  • Kvamme E, Lenda K. Regulation of glutaminase by exogenous glutamate, ammonia and 2-oxoglutarate in synaptosomal enriched preparation from rat brain. Neurochem Res 1982; 7: 667–78
  • Martinez-Hernandez A, Bell K P, Norenberg M D. Glutamine synthetase: glial localization in brain. Science 1977; 195: 1356–8
  • Webster L T, Gabuzda G J. Ammonium uptake by the extremities and brain in hepatic coma. J Clin Invest 1958; 37: 414–24
  • Warter J M, Marescaux Ch, Brandt Ch, Rumbach L, Micheletti G, Chabrier G, et al. Sodium valproate associated with phenobarbital: effects on ammonia metabolism in humans. Epilepsia 1983; 24: 628–33
  • Warter J M, Brandt Ch, Marescaux Ch, Rumbach L, Micheletti G, Chabrier G, et al. The renal origin of sodium valproate-induced hyperammonemia in fasting humans. Neurology 1983; 33: 1136–40
  • Cooper A JL, McDonald J M, Gelbard A S, Gledhill R F, Duffy T E. The metabolic fate of N-labeled ammonia in rat brain. J Biol Chem 1979; 254: 4982–92
  • Bessman S P, Bradley J E. Uptake of ammonia by muscle. Its implications in ammoniagenic coma. New Engl J Med 1985; 253: 1143–7
  • Hawkins R A, Miller A L, Nielsen R C, Veech R L. The acute action of ammonia on rat brain metabolism in vivo. Biochem J 1973; 134: 1001–8
  • Hindfelt B, Plum F, Duffy T E. Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J Clin Invest 1977; 59: 386–96
  • Watanabe A, Shiota T, Takei N, Fujiwara M, Nagashima H. Ammonia detoxification by accelerated oxidation of branched chain amino acids in brains of acute hepatic failure rats. Biochem Med Metab Biol 1986; 35: 367–75
  • Bosman D K, Deutz N EP, De Graaf A A, van der Hulst R WN, Van Eijk H MH, Bovée W MMJ, et al. Changes in brain metabolism during hyperammonemia and acute liver failure: results of a comparative 1H-NMR spectroscopy and biochemical investigation. Hepatology 1990; 12: 281–90
  • Butterworth R F, Girard G, Giguère J F. Regional differences in the capacity for ammonia removal by brain following portocaval anastomosis. J Neurochem 1988; 51: 486–90
  • Deutz N EP, Chamuleau R AFM, De Graaf M, Bovée W MMJ, De Beer R. In vivo 31P NMR spectroscopy of the rat cerebral cortex during acute hepatic encephalopathy. NMR Biomed 1988; 1: 101–6
  • Basile A S, Jones E A, Skolnick P. The pathogenesis and treatment of hepatic encephalopathy: evidence for the involvement of benzodiazepine receptor ligands. Pharm Rev 1991; 43: 27–71
  • Takahashi H, Koehler R C, Brusilow S W, Traystman R J. Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am J Physiol 1991; 261: H825–9
  • Ganz R, Swain M, Traber P, DalCanto M, Butterworth R F, Blei A T. Ammonia induced swelling of rat cerebral cortex slices: implications for the pathogenesis of brain edema in acute hepatic failure. Metab Brain Dis 1989; 4: 213–23
  • Swain M, Butterworth R F, Blei A T. Ammonia and related amino acids in the pathogenesis of brain edema in acute ischemic liver failure in rats. Hepatology 1992; 15: 449–53
  • Haüssinger D, Laubenberger J, vom Dahl S, Ernst T, Bayer S, Langer M, et al. Proton magnetic resonance spectroscopy studies on human brain myo-inositol in hypo-osmolarity and hepatic encephalopathy. Gastroenterology 1994; 107: 1475–80
  • Fonnum F. Glutamate: a neurotransmitter in the mammalian brain. J Neurochem 1984; 42: 1–11
  • Dejong C HC, Deutz N EP, Soeters P B. A simple method for in vivo flux measurement of the rat cerebral cortex. Lab Anim Sci 1992; 42: 280–5
  • Van Eijk H MH, van der Heijden M AH, Van Berlo C LH, Soeters P B. Fully automated liquid-chromatographic determination of amino acids. Clin Chem 1988; 34: 2510–3
  • Van Eijk H MH, Rooyackers D R, Deutz N EP. Rapid routine determination of amino acids in plasma by high-performance liquid chromatography with a 2–3 μm Spherisorb ODS II column. J Chromatogr 1993; 620: 143–8
  • Van Eijk H MH, Dejong C HC, Deutz N EP, Soeters P B. Influence of storage conditions on normal plasma amino acid concentrations. Clin Nutr 1994; 13: 374–80
  • Dejong C HC, Deutz N EP, Soeters P B. Inter-organ nitrogen exchange during prolonged starvation in the rat. J Clin Nutr Gastroenterol 1991; 6: 176–83
  • Basset M L, Mullen K D, Scholz B, Fenstermacher J D, Jones E A. Increased brain uptake of μg-aminobutyric acid in a rabbit model of hepatic encephalopathy. Gastroenterology 1990; 98: 747–57
  • Oldendorf W H, Szabo J. Amino acid assignment to one of three blood-brain amino acid carriers. Am J Physiol 1976; 230: 94–8
  • Maddison J E, Watson W EJ, Dodd P R, Johnston G AR. Alterations in cortical [3H]-kainate and α-[3H]-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid binding in a spontaneous canine model of chronic hepatic encephalopathy. J Neurochem 1991; 56: 1881–8
  • Hindfelt B, Plum F, Duffy T E. Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J Clin Invest 1977; 59: 386–96
  • Bosman D K, Deutz N EP, Maas M AW, Van Eijk H MH, Smit J JH, De Haan J G, et al. Amino acid release from cerebral cortex in experimental acute liver failure, studied by in vivo cerebral cortex dialysis. J Neurochem 1992; 59: 591–9
  • Mans A M, Saunders S J, Kirsch R E, Biebuick J F. Correlation of plasma and brain amino acid and putative neurotransmitter alterations during acute hepatic coma in the rat. J Neurochem 1979; 32: 285–92
  • Fonnum F, Paulsen R P. Comparison of transmitter amino acid levels in rat globus pallidus and neostriatum during hypoglycemia or after treatment with methionine sulfoximine or μg-vinyl μg-aminobutyric acid. J Neurochem 1990; 54: 1253–7
  • Roy S, Pomier-Layrargues G, Butterworth R F, Huet P M. Hepatic encephalopathy in cirrhotic and portacaval shunted dogs: lack of changes in brain GABA uptake, brain GABA levels, brain glutamic acid decarboxylase activity and brain postsynaptic GABA receptors. Hepatology 1988; 8: 845–9
  • McGeer P L, McGeer E G. Amino acid neurotransmitters. Basic neurochemistry, G J Siegel, R W Albers, B W Agranoff, R Katzman. Little, Brown, Boston 1981; 233–54
  • Bosman D K, van den Buijs C ACG, De Haan J G, Maas M AW, Chamuleau R AFM. The effects of benzodiazepine receptor antagonists and partial inverse agonists on acute hepatic encephalopathy in the rat. Gastroenterology 1991; 101: 772–81
  • Butterworth R F, Le O, Lavoie J, Szerb J C. Effect of portacaval anastomosis on electrically stimulated release of glutamate from rat hippocampal slices. J Neurochem 1991; 56: 1481–1
  • Welbourne T C, Phromphetcharat V, Givens G, Joshi S. Regulation of interorgan glutamine flow in metabolic acidosis. Am J Physiol 1986; 250: E457–63
  • Silbernagl S. The renal handling of amino acids and oligopeptides. Physiol Rev 1988; 68: 911–1007
  • Vinay P, Allignet E, Pichette C, Watford M, Lémieux G, Gougoux A. Changes in renal metabolite profile and ammoniagenesis during acute and chronic metabolic acidosis in dog and rat. Kidney Int 1980; 17: 312–25
  • Schröck H, Goldstein L. Interorgan relationships for glutamine metabolism in normal and acidotic rats. Am J Physiol 1981; 240: E519–25
  • Schröck H, Cha C M, Goldstein L. Glutamine release from hindlimb and uptake by kidney in the acutely acidotic rat. Biochem J 1980; 188: 557–60
  • Phromphetcharat V, Welbourne T C. Renal glutamine extraction and gut/liver interaction in glutamine homeostasis. Contrib Nephrol 1985; 47: 9–14
  • Welbourne T C. Effect of metabolic acidosis on hindquarter glutamine and alanine release. Metabolism 1986; 35: 614–8
  • Welbourne T C, Childress D, Givens G. Renal regulation of interorgan glutamine flow in metabolic acidosis. Am J Physiol 1986; 251: R858–66
  • Welbourne T C. Hepatic glutaminase flux regulation of glutamine homeostasis. Studies in vivo. Biol Chem Hoppe Seyler 1986; 367: 301–5
  • Welbourne T C, Dass P D. Gamma glutamyltransferase contribution to renal ammoniagenesis in vivo. Pflügers Arch 1988; 411: 573–8
  • Warter J M, Imler M, Marescaux C, Chabrier G, Rumbach L, Micheletti G, et al. Sodium valproate-induced hyperammonemia in the rat: role of the kidney. Eur J Pharmacol 1983; 87: 177–82
  • Imler M, Chabrier G, Marescaux C, Warter J M. Effects of 2,4-dinitrophenol on renal ammoniagenesis in the rat. Eur J Pharmacol 1986; 123: 175–9
  • Warter J M, Marescaux C, Chabrier G, Rumbach L, Micheletti B, Imler M. Métabolisme rénal de la glutamine chez l'homme au cours des traitements par le valproate de sodium. Rev Neurol (Paris) 1984; 140: 370–1
  • Cooper A JL, Filc-DeRicco S, Gelbard A S. L-13N-glutamate metabolism in normal rat kidney. Progress in hepatic encephalopathy and metabolic nitrogen exchange, F Bengtsson, B Jeppsson, T Almdal, H Vilstrup. CRC Press, Boca Raton 1991; 341–51
  • Atkinson D E, Bourke E. The role of ureagenesis in pH homeostasis. TIBS 1984; 9: 297–300
  • Tannen R L. Ammonia metabolism. Am J Physiol 1978; 235: F265–77
  • Owen E E, Robinson R R. Amino acid extraction and ammonia metabolism by the human kidney during the prolonged administration of ammonium chloride. J Clin Invest 1963; 42: 263–76
  • Berry J N, Flanagan J F, Owen E E, Tyor M P. The kidney as a source of blood ammonia in resting and hyperventilated cirrhotics. Clin Res 1959; 7: 154–5
  • Conn H O, Bircher J. Hepatic encephalopathy: management with lactulose and related carbohydrates. Medi-Ed Press, East Lansing 1988
  • Tyor M P, Owen E E, Berry J N, Flanagan J F. The relative role of extremity, liver and kidney as ammonia receivers and donors in patients with liver disease. Gastroenterology 1960; 39: 420–4
  • Yablon S B, Relman A S. Glutamine as a regulator of renal ammonia production in the rat [Abstract]. Kidney Int 1977; 12: 546
  • Owen E E, Johnson J H, Tyor M P. The effect of induced hyperammonemia on renal ammonia metabolism. J Clin Invest 1961; 40: 215–21
  • Welbourne T, Weber M, Bank N. The effect of glutamine administration on urinary ammonium excretion in normal subjects and patients with renal disease. J Clin Invest 1972; 51: 1852–60
  • Imler M, Schlienger J L, Chabrier G, Comte F. Origine rénale de l'hyperammonièmie provoquée par un regime hyperprotidique chez le rat normal ou porteur d'une stricture portale. Gastroenterol Clin Biol 1983; 7: 740–5
  • Imler M, Schlienger J L, Chabrier G, Simon C. Arterial ammonemia changes of renal origin induced in the rat by acid and alkaline diets. Res Exp Med 1986; 186: 353–63
  • Tizianello A, De Ferrari G, Garibotto G, Gurreri G, Robaudo C. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest 1980; 65: 1162–73
  • Simon E E, Merli C, Herndon J, Hamm L L. Contribution of luminal ammoniagenesis to proximal tubule ammonia appearance in the rat. Am J Physiol 1990; 259: F402–7
  • Nelson D, Rumsey W L, Erecinska M. Glutamine catabolism by heart muscle. Biochem J 1992; 282: 559–64
  • Nagami G T. Ammonia production and secretion by the proximal tubule. Am J Kidney Dis 1989; 14: 258–61
  • Hamm L L, Simon E E. Ammonia transport in the proximal tubule in vivo. Am J Kidney Dis 1989; 14: 253–7
  • Nath K A, Hostetter M K, Hostetter T H. The role of ammonia in progressive renal injury. Molecular aspects of ammoniagenesis, H Endou, A C Schoolwerth, G Baverel, A Tizianello. Contrib Nephrol Basel, Karger 1991; 78–82
  • DuBose T D, Good D W. Chronic hyperkalemia impairs ammonium transport and accumulation in the inner medulla of the rat. J Clin Invest 1992; 90: 1443–9
  • Nagami G T. Effect of angiotensin II on ammonia production and secretion by mouse proximal tubules perfused in vitro. J Clin Invest 1992; 89: 925–31
  • Kikeri D, Sun A, Zeidel M, Hebert S C. Cell membranes impermeable to ammonia. Nature 1989; 339: 478–80
  • Welbouree T C. Role of the lung in glutamine homeostasis. Contrib Nephrol 1988; 63: 178–82
  • Verhoeven A J, Van Iwaarden J F, Joseph S K, Meijer A J. Control of rat-liver glutaminase by ammonia and pH. Eur J Biochem 1983; 133: 241–4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.