141
Views
3
CrossRef citations to date
0
Altmetric
Urology

Bikunin and α1-microglobulin/bikunin precursor (AMBP) gene mutational screening in patients with kidney stones: A case-control study

, , , , , , , & show all
Pages 413-419 | Received 17 Feb 2010, Accepted 28 May 2010, Published online: 05 Jul 2010

References

  • Scheinman SJ. Nephrolithiasis. Semin Nephrol 1999;19:381–8.
  • Frick KK, Bushinsky DA. Molecular mechanisms of primary hypercalciuria. J Am Soc Nephrol 2003;14:1082–95.
  • Moe OW, Bonny O. Genetic hypercalciuria. J Am Soc Nephrol 2005;16:729–45.
  • Stechman MJ, Loh NY, Thakker RV. Genetics of hypercalciuric nephrolithiasis: renal stone disease. Ann N Y Acad Sci 2007;1116:461–84.
  • Marya RK, Dadoo RC, Sharma NK. Genetic predisposition to renal stone disease in the first-degree relatives of stone-formers. Urol Int 1981;36:245–7.
  • Goldfarb DS, Fischer ME, Keich Y, Goldberg J. A twin study of genetic and dietary influences on nephrolithiasis: a report from the Vietnam Era Twin (VET) Registry. Kidney Int 2005;67:1053–61.
  • Edvardsson VO, Palsson R, Indridason OS, Thorvaldsson S, Stefansson K. Familiality of kidney stone disease in Iceland. Scand J Urol Nephrol 2009;43:420–4.
  • Thorleifsson G, Holm H, Edvardsson V, Walters GB, Styrkarsdottir U, Gudbjartsson DF, Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat Genet 2009;41:926–30.
  • Bid HK, Chaudhary H, Mittal RD. Association of vitamin-D and calcitonin receptor gene polymorphism in paediatric nephrolithiasis. Pediatr Nephrol 2005;20:773–6.
  • Bid HK, Kumar A, Kapoor R, Mittal RD. Association of vitamin D receptor-gene (FokI) polymorphism with calcium oxalate nephrolithiasis. J Endourol 2005;19:111–5.
  • Vezzoli G, Terranegra A, Arcidiacono T, Gambaro G, Milanesi L, Mosca E, Calcium kidney stones are associated with a haplotype of the calcium-sensing receptor gene regulatory region. Nephrol Dial Transplant 2010; Jan 12. [Epub ahead of print]
  • Salier JP, Rouet P, Raguenez G, Daveau M. The inter-α-inhibitor family: from structure to regulation. Biochem J 1996;315:1–9.
  • Moriyama MT, Glenton PA, Khan SR. Expression of inter-α inhibitor related proteins in kidneys and urine of hyperoxaluric rats. J Urol 2001;165:1687–92.
  • Atmani F, Glenton PA, Khan SR. Role of inter-α-inhibitor and its related proteins in experimentally induced calcium oxalate urolithiasis. Localization of proteins and expression of bikunin gene in the rat kidney. Urol Res 1999;27:63–7.
  • Hochstrasser K, Wachter E. Kunitz-type proteinase inhibitors derived by limited proteolysis of the inter-α-trypsin inhibitor, I. Determination of the amino acid sequence of the antitryptic domain by solid-phase Edman degradation. Hoppe Seylers Z Physiol Chem 1979;360:1285–96.
  • Kobayashi H, Suzuki M, Hirashima Y, Terao T. The protease inhibitor bikunin, a novel anti-metastatic agent. Biol Chem 2003;384:749–54.
  • Salier P, Simon D, Rouet P, Raguenez G, Muscatelli F, Gebhard W, Homologous chromosomal locations of the four genes for inter-α-inhibitor and pre-α-inhibitor family in human and mouse. Assignment of the ancestral gene for the lipocalin superfamily. Genomics 1992;14:83–8.
  • Blom AM, Mörgelin M, Oyen M, Jarvet J, Fries E. Structural characterization of inter-α-inhibitor. Evidence for an extended shape. J Biol Chem 1999;274:298–304.
  • Enghild JJ, Thøgersen IB, Cheng F, Fransson LA, Roepstorff P, Rahbek-Nielsen H. Organization of the inter-α-inhibitor heavy chains on the chondroitin sulfate originating from Ser(10) of bikunin: posttranslational modification of IαI-derived bikunin. Biochemistry 1999;38:11804–13.
  • Medetognon-Benissan J, Tardivel S, Hennequin C, Daudon M, Drüeke T, Lacour B. Inhibitory effect of bikunin on calcium oxalate crystallization in vitro and urinary bikunin decrease in renal stone formers. Urol Res 1999;27:69–75.
  • Suzuki M, Kobayashi H, Kageyama S, Shibata K, Fujie M, Terao T. Excretion of bikunin and its fragments in the urine of patients with renal stones. J Urol 2001;166:268–74.
  • Müllenbach R, Lagoda PJ, Welter C. An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet 1989;5:391.
  • Kanai N, Fujii T, Saito K, Tokoyama T. Rapid and simple method for preparation of genomic DNA from easily obtainable clotted blood. J Clin Pathol 1994;47:1043–4.
  • Diarra-Mehrpour M, Bourguignon J, Sesboüe R, Salier JP, Leveillard T, Martin JP. Structural analysis of the human inter-α-trypsin inhibitor light-chain gene. Eur J Biochem 1990;191:131–9.
  • Rouet P, Raguenez G, Tronche F, Yaniv M, N'Guyen C, Salier JP. A potent enhancer made of clustered liver-specific elements in the transcription control sequences of human α1-microglobulin/bikunin gene. J Biol Chem 1992;267:20765–73.
  • Sanchez D, Martinez S, Lindqvist A, Akerstrom B, Falkenberg C. Expression of the AMBP gene transcript and its two protein products, α1-microglobulin and bikunin, in mouse embryogenesis. Mech Dev 2002;117:293–8.
  • Khan SR. Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies. Clin Exp Nephrol 2004;8:75–88.
  • Iida S, Peck AB, Johnson-Tardieu J, Moriyama M, Glenton PA, Byer KJ, Temporal changes in mRNA expression for bikunin in the kidneys of rats during calcium oxalate nephrolithiasis. J Am Soc Nephrol 1999;10:986–96.
  • Iida S, Peck AB, Byer KJ, Khan SR. Expression of bikunin mRNA in renal epithelial cells after oxalate exposure. J Urol 1999;162:1480–6.
  • Katsuma S, Shiojima S, Hirasawa A, Takagaki K, Kaminishi Y, Koba M, Global analysis of differentially expressed genes during progression of calcium oxalate nephrolithiasis. Biochem Biophys Res Commun 2002;296:544–52.
  • Khan SR. Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies. Clin Exp Nephrol 2004;8:75–88.
  • Tsujihata M. Mechanism of calcium oxalate renal stone formation and renal tubular cell injury. Int J Urol 2008;15:115–20.
  • Mizon C, Piva F, Queyrel V, Balduyck M, Hachulla E, Mizon J. Urinary bikunin determination provides insight into proteinase/proteinase inhibitor imbalance in patients with inflammatory diseases. Clin Chem Lab Med 2002;40:579–86.
  • Matsuzaki H, Kobayashi H, Yagyu T, Wakahara K, Kondo T, Kurita N, Bikunin inhibits lipopolysaccharide-induced tumor necrosis factor alpha induction in macrophages. Clin Diagn Lab Immunol 2004;11:1140–7.
  • Wakahara K, Kobayashi H, Yagyu T, Matsuzaki H, Kondo T, Kurita N, Bikunin suppresses lipopolysaccharide-induced lethality through down-regulation of tumor necrosis factor-alpha and interleukin-1beta in macrophages. J Infect Dis 2005;191:930–8.
  • Kanayama S, Yamada Y, Onogi A, Shigetomi H, Ueda S, Tsuji Y, Bikunin suppresses expression of pro-inflammatory cytokines induced by lipopolysaccharide in neutrophils. J Endotoxin Res 2007;13:369–76.
  • Atmani F, Khan SR. Role of inter-α-inhibitor and its related proteins in urolithiasis. Purification of an inter-α-inhibitor related protein from the bovine kidney. Urol Res 1999;27:57–61.
  • Dawson CJ, Grover PK, Ryall RL. Inter-α-inhibitor in urine and calcium oxalate urinary crystals. Br J Urol 1998;81:20–6.
  • Dean C, Kanellos J, Pham H, Gomes M, Oates A, Grover P, Effects of inter-α-inhibitor and several of its derivatives on calcium oxalate crystallization in vitro. Clin Sci (Lond) 2000;98:471–80.
  • Worchester E. Inhibitors of stone formation. Semin Nephrol 1996;16:474–86.
  • Yuki Y, Nomura K, Kirihara M, Shimomura M, Hiratani H, Nishimura R, Charge isomers of urinary bikunin (trypsin inhibitor). Biochim Biophys Acta 1993;1203:298–303.
  • Babiker-Mohamed H, Olsson ML, Boketoft A, Lögdberg L, Akerström B. α1-Microglobulin is mitogenic to human peripheral blood lymphocytes. Regulation by both enhancing and suppressive serum factors. Immunobiology 1990;180:221–34.
  • Marengo S, Resnick M, Yang L, Chung J. Differential expression of urinary-α-trypsin inhibitor trimers and dimers in normal compared to active calcium oxalate stone forming men. J Urol 1998;159:1444–50.
  • Hedgepeth RC, Yang L, Resnick MI, Marengo SR. Expression of proteins that inhibit calcium oxalate crystallization in vitro in the urine of normal and stone-forming individuals. Am J Kidney Dis 2001;37:104–12.
  • Boyce WH. Organic matrix of human urinary concretions. Am J Med 1968;45:673–83.
  • Kumar V, Farell G, Lieske JC. Whole urinary proteins coat calcium oxalate monohydrate crystals to greatly decrease their adhesion to renal cells. J Urol 2003;170:221–5.
  • Petrucci M, Scott P, Ouimet D, Trouve ML, Proulx Y, Valiquette L, Evaluation of the calcium-sensing receptor gene in idiopathic hypercalciuria and calcium nephrolithiasis. Kidney Int 2000;58:38–42.
  • Gianfrancesco F, Esposito T, Ombra MV, Forabosco P, Maninchedda G, Fattorini M, Identification of a novel gene and a common variant associated with uric acid nephrolithiasis in a Sardinian genetic isolate. Am J Hum Genet 2003;72:1479–91.
  • Prie D, Beck L, Friedlander G, Silve C. Sodium-phosphate cotransporters, nephrolithiasis and bone demineralization. Curr Opin Nephrol Hypertens 2004;13:675–81.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.