Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 41, 2011 - Issue 2
168
Views
9
CrossRef citations to date
0
Altmetric
Animal Pharmacokinetics and Metabolism

Urinary metabolites of 2-bromoethanamine identified by stable isotope labelling: evidence for carbamoylation and glutathione conjugation

, , , , , , , , , , , & show all
Pages 144-154 | Received 30 Jul 2010, Accepted 30 Sep 2010, Published online: 02 Nov 2010

References

  • Anthony ML, Holmes E, McDowell PC, Gray TJ, Blackmore M, Nicholson JK. (1995). 1H NMR spectroscopic studies on the reactions of haloalkylamines with bicarbonate ions: formation of N-carbamates and 2-oxazolidones in cell culture media and blood plasma. Chem Res Toxicol 8:1046–1053.
  • Bach PH, Christian R, Baker J, Bridges JW. (1980). The metabolism of 2-bromo-(1-14C) ethylamine (BEA): A model compound for inducing renal papillary necrosis (RPN). Toxicol Lett 6:113.
  • Bach PH, Grasso P, Molland EA, Bridges JW. (1983). Changes in medullary glycosaminoglycan histochemistry and microvascular filling during the development of 2-bromoethanamine hydrobromide-induced renal papillary necrosis. Toxicol Appl Pharmacol 69:333–344.
  • Bach PH, Bridges JW. (1985). Chemically induced renal papillary necrosis and upper urothelial carcinoma. Part 1. Crit Rev Toxicol 15:217–329.
  • Bach PH, Nguyen TK. (1998). Renal papillary necrosis–40 years on. Toxicol Pathol 26:73–91.
  • Cossec B, Cavelier L, Moitessier-Bergé N, Morel G, de Ceaurriz J. (1996). Formation of GSH-derivatives as a pathway for inactive intermediates in vinylidene chloride-treated rats. Toxicol Lett 89:223–229.
  • Davies DJ. (1969). The structural changes in the kidney and urinary tract caused by ethyleneimine (“vinylamine”). J Pathol 97:695–703.
  • Ding YS, Blount BC, Valentin-Blasini L, Applewhite HS, Xia Y, Watson CH, Ashley DL. (2009). Simultaneous determination of six mercapturic acid metabolites of volatile organic compounds in human urine. Chem Res Toxicol 22:1018–1025.
  • Gagné S, Crane S, Huang Z, Li CS, Bateman KP, Lévesque JF. (2007). Rapid measurement of deuterium-labeled long-chain fatty acids in plasma by HPLC-ESI-MS. J Lipid Res 48:252–259.
  • Gérin M, Tardif R. (1986). Urinary N-acetyl-S-2-hydroxyethyl-L-cysteine in rats as biological indicator of ethylene oxide exposure. Fundam Appl Toxicol 7:419–423.
  • Holmes E, Caddick S, Lindon JC, Wilson ID, Kryvawych S, Nicholson JK. (1995). 1H and 2H NMR spectroscopic studies on the metabolism and biochemical effects of 2-bromoethanamine in the rat. Biochem Pharmacol 49:1349–1359.
  • Kedderis GL, Sumner SC, Held SD, Batra R, Turner MJ Jr, Roberts AE, Fennell TR. (1993). Dose-dependent urinary excretion of acrylonitrile metabolites by rats and mice. Toxicol Appl Pharmacol 120:288–297.
  • Lin YH, Salem N Jr. (2007). Whole body distribution of deuterated linoleic and alpha-linolenic acids and their metabolites in the rat. J Lipid Res 48:2709–2724.
  • Melse-Boonstra A, Verhoef P, West CE, van Rhijn JA, van Breemen RB, Lasaroms JJ, Garbis SD, Katan MB, Kok FJ. (2006). A dual-isotope-labeling method of studying the bioavailability of hexaglutamyl folic acid relative to that of monoglutamyl folic acid in humans by using multiple orally administered low doses. Am J Clin Nutr 84:1128–1133.
  • Mutlib AE. (2008). Application of stable isotope-labeled compounds in metabolism and in metabolism-mediated toxicity studies. Chem Res Toxicol 21:1672–1689.
  • Nanra RS. (1983). Renal effects of antipyretic analgesics. Am J Med 75:70–81.
  • Powell CJ, Grasso P, Ioannides C, Wilson J, Bridges JW. (1991). Haloalkylamine-induced renal papillary necrosis: a histopathological study of structure-activity relationships. Int J Exp Pathol 72:631–646.
  • Schaefer WH. (2006). Reaction of primary and secondary amines to form carbamic acid glucuronides. Curr Drug Metab 7:873–881.
  • Thielemann LE, Oberhauser EW, Rosenblut G, Videla LA, Valenzuela A. (1990). Sulfur-containing amino acids that increase renal glutathione protect the kidney against papillary necrosis induced by 2-bromoethylamine. Cell Biochem Funct 8:19–24.
  • Thielemann LE, Rodrigo RA, Oberhauser EW, Rosenblut G, Videla LA. (1995). N-acetyl-L-cysteine abolishes the bromoethylamine-induced choline incorporation into renal papillary tissue. J Biochem Toxicol 10:251–257.
  • van Bladeren PJ, Breimer DD, Rotteveel-Smijs GM, de Jong RA, Buijs W, van der Gen A, Mohn GR. (1980). The role of glutathione conjugation in the mutagenicity of 1,2-dibromoethane. Biochem Pharmacol 29:2975–2982.
  • Vermeulen NPE, de Jong J, van Bergen EJC, van Welie RTH. (1989). N-acetyl-S-(2-hydroxyethyl)-L-cysteine as a potential tool in biological monitoring studies? Arch Toxicol 63:173–184.
  • Warrack BM, Hnatyshyn S, Ott K-H Reily, MD, Sanders M, Zhang H, Drexler DM. (2009). Normalization strategies for metabonomic analysis of urine samples. J Chromatogr B 877:547–552.
  • Wolf DC, Carlson GP, DeNicola DB, Carlton WW. (1991). Effects of reserpine and L-cysteine and glutathione depletion on 2-bromoethylamine hydrobromide-induced tubular necrosis in Swiss ICR mice. Food Chem Toxicol 29:565–573.
  • Wright GJ, Rowe VK. (1967). Ethylenimine: studies of the distribution and metabolism in the rat using carbon-14. Toxicol Appl Pharmacol 11:575–584.
  • Yu PH, Davis BA, Deng Y. (2001). 2-Bromoethylamine as a potent selective suicide inhibitor for semicarbazide-sensitive amine oxidase. Biochem Pharmacol 61:741–748.
  • Zhang H, Zhang D, Ray K. (2003). A software filter to remove interference ions from drug metabolites in accurate mass liquid chromatography/mass spectrometric analyses. J Mass Spectrom 38:1110–1112.
  • Zhu M, Ma L, Zhang D, Ray K, Zhao W, Humphreys WG, Skiles G, Sanders M, Zhang H. (2006). Detection and characterization of metabolites in biological matrices using mass defect filtering of liquid chromatography/high resolution mass spectrometry data. Drug Metab Dispos 34:1722–1733.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.