Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 41, 2011 - Issue 10
259
Views
8
CrossRef citations to date
0
Altmetric
Topics in Xenobiochemistry

Racemates revisited: heterochiral assemblies and the example of dl-thalidomide

, , &
Pages 837-843 | Received 04 Apr 2011, Accepted 19 May 2011, Published online: 05 Jul 2011

References

  • Allen FH, Trotter J. (1971). Crystal and molecular structure of thalidomide, N-(α-glutarimido)-phthalimide. J Chem Soc [B] 1073–1079.
  • Andelman D. (1989). Chiral discrimination and phase transitions in Langmuir monolayers. J Am Chem Soc 111:6536–6544.
  • Barrett AM, Cullum VA. (1968). The biological properties of the optical isomers of propranolol and their effects on cardiac arrhythmias. Br J Pharmacol 34:43–55.
  • Berthelot M, Jungfleisch E. (1874). Recherches sur l’isomérie symétrique et sur les quatre acides tartriques. C R Acad Sci 78:711–716.
  • Berthelot M, Jungfleisch E. (1875). Recherches sur l’isomérie symétrique et sur les quatre acides tartriques. Ann Chim Phys [5th série] 4:147–154.
  • Bruni G. (1904). Racemism. Atti Accad Naz Lincei Rend 13:373–381.
  • Bruni G, Finzi F. (1904). Racemism. Atti Accad Naz Lincei Rend 13:349–355.
  • Bruni G, Podoa M. (1902a). Sull’esistenza di corpi racemi in soluzione; nota preliminare. Gazz Chim Ital 32:503–509.
  • Bruni G, Podoa M. (1902b). Sull’esistenza di corpi racemi in soluzione. Atti Accad Naz Lincei Rend 11:212–217.
  • Bryson FFS, Logie J. (1913). On the constitution of the mercury green line (λ = 5461 Å u) Phil Mag [Series 6] 26:366–375.
  • Byk A. (1904a). Zur Frage der Spaltbarkeit von Razemverbindung durch zirkular-polarisiertes Licht, ein Beitrag zur primären Entstehung optisch-aktiver Substanz. Z Phys Chem 49:641–687.
  • Byk A. (1904b). Zur Frage der Spaltbarkeit von Racemverbindungen durch zirkular-polarisiertes Licht, ein Beitrag zur primären Entstehung optisch-aktiver Substanz. Ber Deut Chem Ges 37:4696–4700.
  • Byk A. (1905). Zur Frage der Spaltbarkeit von Racemverbindungen durch zirkular-polarisiertes Licht, ein Beitrag zur primären Entstehung optisch-aktiver Substanz. Chem Zentr 76:318–319.
  • Cotton A. (1896). Recherches sur l’absorption et la dispersion de la lumière par les milieux doués du pouvoir rotatoire. Ann Chim Phys [7th série] 8:347–432.
  • Cotton A. (1929). Sur la synthèse asymétrique et sur l’existence en solution des composés racémiques. C R Acad Sci 189:1211–1213.
  • Cundy KC, Crooks PA. (1983). Unexpected phenomenon in the high-performance liquid chromatographic analysis of racemic 14C-labelled nicotine: separation of enantiomers in a totally achiral system. J Chromatogr 281:17–33.
  • Dunlop JH, Evans DF, Gillard RD, Wilkinson G. (1966). Optically active coordination compounds. VI. Stereoselective effects in alkaline tartrate-complexes of transition metals. J Chem Soc [A] 1260–1264.
  • Dunstan AE, Thole FB. (1908). The relation between viscosity and chemical constitution. Part II. The existence of racemic compounds in the liquid state. J Chem Soc Trans 93:1815–1821.
  • Dunstan AE, Thole FB. (1910). The existence of racemic compounds in solution. J Chem Soc Trans 97:1249–1256.
  • Eliel EL. (1962). Stereochemistry of Carbon Compounds. New York: McGraw-Hill, pp. 44–45.
  • Eliel EL, Wilen SH, Doyle MP. (2001). Basic Organic Stereochemistry. New York: Wiley-Interscience, pp. 107–111.
  • Ellis GP. (1966). Modern Textbook of Organic Chemistry. London: Butterworths, pp. 251–253.
  • Eriksson T, Björkman S, Roth B, Fyge A, Höglund P. (1998). Enantiomers of thalidomide: blood distribution and the influence of serum albumin on chiral inversion and hydrolysis. Chirality 10:223–228.
  • Fabro S, Smith RL, Williams RT. (1967). Toxicity and teratogenicity of optical isomers of thalidomide. Nature 215:296.
  • Fabro SE, Schumacher H, Smith RL, Williams RT. (1963). [Metabolism of thalidomide. I. The spontaneous hydrolysis of thalidomide]. Boll Soc Ital Biol Sper 39:1921–1925.
  • Finar IL. (1959). Organic Chemistry: Stereochemistry and the Chemistry of Natural Products. London: Longmans, Green, Vol. 2, 2nd edn, p. 57.
  • Furberg S. (1965). Structural relationship between thalidomide and nucleosides. Acta Chem Scand 19:1266–1267.
  • Furberg S, Petersen CS. (1965). The crystal structure of N-(α-glutarimido)-4-bromophthalimide. Acta Chem Scand 19:253–254.
  • Gheorghiu TD. (1929). Sur l’absorption des tartrates de cuivre gauche et de leur mélange. C R Acad Sci 189:1260–1262.
  • Gheorghiu TD. (1933). The use of gas photoelectric cells in photometric measurements. Appl Ann Phys 20:133–242.
  • Hague D. (1969). Some Biochemical Aspects of Thalidomide Toxicity. Ph.D. Thesis, University of London, England, UK.
  • Hague D, Smith R. (1988). Enigmatic properties of (±)thalidomide: an example of a stable racemic compound. Br J Clin Pharmacol 26:623.
  • Harger MJP. (1976). Nuclear-magnetic resonance non-equivalence of the enantiomers of optically active samples of phosphinic acids. J Chem Soc Chem Commun 555–556.
  • Harger MJP. (1977). Proton magnetic resonance non-equivalence of the enantiomers of alkylphenylphosphinic amides. J Chem Soc Perkin Trans 2:1882–1887.
  • Harger MJP. (1978a). Chemical shift non-equivalence of enantiomers in the proton magnetic resonance spectra of partly resolved phosphinothioic acids. J Chem Soc Perkin Trans 2:326–331.
  • Harger MJP. (1978b). Proton magnetic resonance spectra of chiral phosphorus esters: chemical shift non-equivalence of enantiomers induced by optically active phosphinothioic acids. Tet Lett 19:2927–2928.
  • Heilbronner E, Dunitz JD. (1993). Reflections on Symmetry in Chemistry ... and Elsewhere. Basel: Verlag HCA, p. 114.
  • Horeau A, Guetté JP. (1974). Interactions diastereoisomeres d’antipodes en phase liquide. Tetrahedron 30:1923–1931.
  • Huang SH, Bai ZW, Feng JW. (2009). Chiral self-discrimination of the enantiomers of alpha-phenylethylamine derivatives in proton NMR. Magn Reson Chem 47:423–427.
  • Jönsson NA. (1972a). Chemical structure and teratogenic properties. 3. A review of available data on structure–activity relationships and mechanism of action of thalidomide analogues. Acta Pharm Suec 9:521–542.
  • Jönsson NA. (1972b). Chemical structure and teratogenic properties. IV. An outline of a chemical hypothesis for the teratogenic action of thalidomide. Acta Pharm Suec 9:543–562.
  • Kabachnik MI, Mastryukova TA, Fedin EI, Vaisberg MS, Morozov LL, Petrovskii PV, Shipov AE. (1976). An NMR study of optical isomers in solution. Tetrahedron 32:1719–1728.
  • Kabachnik MI, Mastryukova TA, Fedin EI, Vaisberg MS, Morozov LL, Petrovskii PV, Shipov AE. (1978). Optical isomers in solution investigated by nuclear magnetic resonance. Usp Khim 47:1541–1564; Russ Chem Rev 47:821–834.
  • Kagan K. (1979). Organic Stereochemistry. London: Edward Arnold, p. 96.
  • Knobloch J, Shaughnessy JD Jr, Rüther U. (2007). Thalidomide induces limb deformities by perturbing the Bmp/Dkk1/Wnt signaling pathway. FASEB J 21:1410–1421.
  • Knoche B, Blaschke G. (1994). Investigations on the in vitro racemization of thalidomide by high-performance liquid chromatography. J Chromatogr 666:235–240.
  • Lepper ER, Smith NF, Cox MC, Scripture CD, Figg WD. (2006). Thalidomide metabolism and hydrolysis: mechanisms and implications. Curr Drug Metab 7:677–685.
  • Liu ST, Hurwitz A. (1978). Effect of enantiomeric purity on solubility determination of dexclamol hydrochloride. J Pharm Sci 67:636–638.
  • Nean SH, Shinwari MK, Hellmuth EW. (1993). Melting point phase diagrams of free base and hydrochloride salts of bevantolol, pindalol and propranolol. Int J Pharm 99:303–310.
  • Pasteur ML. (1850). Recherches sur les propriétés spécifiques des deux acides qui composent l’acide racémique. Ann Chim Phys [3rd série] 28:56–99.
  • Peterson CS. (1969). The crystal structure of N-(α-glutarimido)-4-bromophthalimide. Acta Chem Scand 23:2389–2402.
  • Pirkle WH, Hoover DJ. (1982). NMR chiral solvating agents. In: Allinger NL, Eliel EL, Wilen SH, eds. Topics in Stereochemistry. New York: Wiley-Interscience, Vol. 13, pp. 263–331.
  • Reist M, Carrupt PA, Francotte E, Testa B. (1998). Chiral inversion and hydrolysis of thalidomide: mechanisms and catalysis by bases and serum albumin, and chiral stability of teratogenic metabolites. Chem Res Toxicol 11:1521–1528.
  • Repta AJ, Baltezor MJ, Bansal PC. (1976). Utilization of an enantiomer as a solution to a pharmaceutical problem: application to solubilization of 1,2-di(4-piperazine-2,6-dione)propane. J Pharm Sci 65:238–242.
  • Roozeboom HWB. (1899). Loslichkeit und Schmelzpunkt als Kriterien für racemische Verbindungen, pseudoracemische Mischkrystalle und inaktive Konglomerate. Z Phys Chem 28:494–517.
  • Schumacher H, Smith RL, Williams RT. (1965a). The metabolism of thalidomide: the spontaneous hydrolysis of thalidomide in solution. Br J Pharmacol Chemother 25:324–337.
  • Schumacher H, Smith RL, Williams RT. (1965b). The metabolism of thalidomide: the fate of thalidomide and some of its hydrolysis products in various species. Br J Pharmacol Chemother 25:338–351.
  • Shealy YF, Opliger CE, Montgomery JA. (1965). d- and l-thalidomide. Chem Ind 24:1030–1031.
  • Shealy YF, Opliger CE, Montgomery JA. (1968). Synthesis of d- and l-thalidomide and related studies. J Pharm Sci 57:757–764.
  • Singh BK, Amma MKP. (1953). Studies on the nature of the racemic modifications of optically active compounds in the solid state. Part X. σ-,m-,p-Chloroanilino-camphor-β-sulphonates (d and dl) and camphor-β-sulphonyl-σ-,m-,p-chlorophenylamides (d and dl). Proc Math Sci 38:502–515.
  • Smith RL. (2008). Racemic heterochiral assemblies: a novel aspect of chirality: biological implications. Eur J Drug Metab Pharmacokinet 33:10–11.
  • Stephens TD. (1988). Proposed mechanisms of action in thalidomide embryopathy. Teratology 38:229–239.
  • Stephens TD, Bunde CJ, Fillmore BJ. (2000). Mechanism of action in thalidomide teratogenesis. Biochem Pharmacol 59:1489–1499.
  • Therapontos C, Erskine L, Gardner ER, Figg WD, Vargesson N. (2009). Thalidomide induces limb defects by preventing angiogenic outgrowth during early limb formation. Proc Natl Acad Sci USA 106:8573–8578.
  • Williams RT, Schumacher H, Fabro S, Smith RL (1965). The chemistry and metabolism of thalidomide. In: Robson JM, Sullivan FM, Smith RL, eds. Embryopathic Activity of Drugs. London: JA Churchill, pp. 167–193.
  • Williams T, Pitcher RG, Bommer P, Gutzwiller J, Usokovic M. (1969). Diastereomeric solute–solute interactions of enantiomers in achiral solvents. Nonequivalence of the nuclear magnetic resonance spectra of racemic and optically active dihydroquinine. J Am Chem Soc 91:1871–1872.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.