Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 42, 2012 - Issue 8
570
Views
26
CrossRef citations to date
0
Altmetric
Topics in Xenobiochemistry

Understanding substrate selectivity of human UDP-glucuronosyltransferases through QSAR modeling and analysis of homologous enzymes

, , &
Pages 808-820 | Received 15 Dec 2011, Accepted 31 Jan 2012, Published online: 02 Mar 2012

References

  • Battaglia E, Senay C, Fournel-Gigleux S, Herber R, Siest G, Magdalou J. (1994). The chemical modification of human liver UDP-glucuronosyltransferase UGT1*6 reveals the involvement of a carboxyl group in catalysis. FEBS Lett 346:146–150.
  • Berger I, Guttman C, Amar D, Zarivach R, Aharoni A. (2011). The molecular basis for the broad substrate specificity of human sulfotransferase 1A1. PLoS ONE 6:e26794.
  • Bolam DN, Roberts S, Proctor MR, Turkenburg JP, Dodson EJ, Martinez-Fleites C, Yang M, Davis BG, Davies GJ, Gilbert HJ. (2007). The crystal structure of two macrolide glycosyltransferases provides a blueprint for host cell antibiotic immunity. Proc Natl Acad Sci USA 104:5336–5341.
  • Bosma PJ. (2003). Inherited disorders of bilirubin metabolism. J Hepatol 38:107–117.
  • Strassburg CP. (2008). Pharmacogenetics of Gilbert’s syndrome. Pharmacogenomics 9:703–715.
  • Brazier-Hicks M, Edwards LA, Edwards R. (2007b). Selection of plants for roles in phytoremediation: The importance of glucosylation. Plant Biotechnol J 5:627–635.
  • Brazier-Hicks M, Edwards R. (2005). Functional importance of the family 1 glucosyltransferase UGT72B1 in the metabolism of xenobiotics in Arabidopsis thaliana. Plant J 42:556–566.
  • Brazier-Hicks M, Offen WA, Gershater MC, Revett TJ, Lim EK, Bowles DJ, Davies GJ, Edwards R. (2007a). Characterization and engineering of the bifunctional N- and O-glucosyltransferase involved in xenobiotic metabolism in plants. Proc Natl Acad Sci USA 104:20238–20243.
  • Breton C, Snajdrová L, Jeanneau C, Koca J, Imberty A. (2006). Structures and mechanisms of glycosyltransferases. Glycobiology 16:29R–37R.
  • Chang A, Singh S, Helmich KE, Goff RD, Bingman CA, Thorson JS, Phillips GN Jr. (2011). Complete set of glycosyltransferase structures in the calicheamicin biosynthetic pathway reveals the origin of regiospecificity. Proc Natl Acad Sci USA 108:17649–17654.
  • Court MH. (2005). Isoform-selective probe substrates for in vitro studies of human UDP-glucuronosyltransferases. Meth Enzymol 400:104–116.
  • Coutinho PM, Deleury E, Davies GJ, Henrissat B. (2003). An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317.
  • Dong D, Wu B. (2012). Substrate selectivity of drug-metabolizing cytochrome P450s predicted from crystal structures and in silico modeling. Drug Metab Rev 44:1–17.
  • Ekins S, de Groot MJ, Jones JP. (2001). Pharmacophore and three-dimensional quantitative structure activity relationship methods for modeling cytochrome p450 active sites. Drug Metab Dispos 29:936–944.
  • Ethell BT, Ekins S, Wang J, Burchell B. (2002). Quantitative structure activity relationships for the glucuronidation of simple phenols by expressed human UGT1A6 and UGT1A9. Drug Metab Dispos 30:734–738.
  • He XZ, Li WS, Blount JW, Dixon RA. (2008). Regioselective synthesis of plant (iso)flavone glycosides in Escherichia coli. Appl Microbiol Biotechnol 80:253–260.
  • He XZ, Wang X, Dixon RA. (2006). Mutational analysis of the Medicago glycosyltransferase UGT71G1 reveals residues that control regioselectivity for (iso)flavonoid glycosylation. J Biol Chem 281:34441–34447.
  • Hu Y, Walker S. (2002). Remarkable structural similarities between diverse glycosyltransferases. Chem Biol 9:1287–1296.
  • Kaivosaari S, Finel M, Koskinen M. (2011). N-glucuronidation of drugs and other xenobiotics by human and animal UDP-glucuronosyltransferases. Xenobiotica 41:652–669.
  • Kerdpin O, Mackenzie PI, Bowalgaha K, Finel M, Miners JO. (2009). Influence of N-terminal domain histidine and proline residues on the substrate selectivities of human UDP-glucuronosyltransferase 1A1, 1A6, 1A9, 2B7, and 2B10. Drug Metab Dispos 37:1948–1955.
  • Lairson LL, Henrissat B, Davies GJ, Withers SG. (2008). Glycosyltransferases: Structures, functions, and mechanisms. Annu Rev Biochem 77:521–555.
  • Lewinsky RH, Smith PA, Mackenzie PI. (2005). Glucuronidation of bioflavonoids by human UGT1A10: Structure-function relationships. Xenobiotica 35:117–129.
  • Li D, Fournel-Gigleux S, Barré L, Mulliert G, Netter P, Magdalou J, Ouzzine M. (2007b). Identification of aspartic acid and histidine residues mediating the reaction mechanism and the substrate specificity of the human UDP-glucuronosyltransferases 1A. J Biol Chem 282:36514–36524.
  • Li L, Modolo LV, Escamilla-Trevino LL, Achnine L, Dixon RA, Wang X. (2007a). Crystal structure of Medicago truncatula UGT85H2–insights into the structural basis of a multifunctional (iso)flavonoid glycosyltransferase. J Mol Biol 370:951–963.
  • Mackenzie PI, Bock KW, Burchell B, Guillemette C, Ikushiro S, Iyanagi T, Miners JO, Owens IS, Nebert DW. (2005). Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics 15:677–685.
  • Miley MJ, Zielinska AK, Keenan JE, Bratton SM, Radominska-Pandya A, Redinbo MR. (2007). Crystal structure of the cofactor-binding domain of the human phase II drug-metabolism enzyme UDP-glucuronosyltransferase 2B7. J Mol Biol 369:498–511.
  • Mittler M, Bechthold A, Schulz GE. (2007). Structure and action of the C-C bond-forming glycosyltransferase UrdGT2 involved in the biosynthesis of the antibiotic urdamycin. J Mol Biol 372:67–76.
  • Modolo LV, Blount JW, Achnine L, Naoumkina MA, Wang X, Dixon RA. (2007). A functional genomics approach to (iso)flavonoid glycosylation in the model legume Medicago truncatula. Plant Mol Biol 64:499–518.
  • Modolo LV, Li L, Pan H, Blount JW, Dixon RA, Wang X. (2009). Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso)flavonoids. J Mol Biol 392:1292–1302.
  • Mulichak AM, Losey HC, Lu W, Wawrzak Z, Walsh CT, Garavito RM. (2003). Structure of the TDP-epi-vancosaminyltransferase GtfA from the chloroeremomycin biosynthetic pathway. Proc Natl Acad Sci USA 100:9238–9243.
  • Mulichak AM, Losey HC, Walsh CT, Garavito RM. (2001). Structure of the UDP-glucosyltransferase GtfB that modifies the heptapeptide aglycone in the biosynthesis of vancomycin group antibiotics. Structure 9:547–557.
  • Mulichak AM, Lu W, Losey HC, Walsh CT, Garavito RM. (2004). Crystal structure of vancosaminyltransferase GtfD from the vancomycin biosynthetic pathway: Interactions with acceptor and nucleotide ligands. Biochemistry 43:5170–5180.
  • Noguchi A, Saito A, Homma Y, Nakao M, Sasaki N, Nishino T, Takahashi S, Nakayama T. (2007). A UDP-glucose:isoflavone 7-O-glucosyltransferase from the roots of soybean (glycine max) seedlings. Purification, gene cloning, phylogenetics, and an implication for an alternative strategy of enzyme catalysis. J Biol Chem 282:23581–23590.
  • O’Dwyer PJ, Catalano RB. (2006). Uridine diphosphate glucuronosyltransferase (UGT) 1A1 and irinotecan: Practical pharmacogenomics arrives in cancer therapy. J Clin Oncol 24:4534–4538.
  • Offen W, Martinez-Fleites C, Yang M, Kiat-Lim E, Davis BG, Tarling CA, Ford CM, Bowles DJ, Davies GJ. (2006). Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J 25:1396–1405.
  • Osmani SA, Bak S, Møller BL. (2009). Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. Phytochemistry 70:325–347.
  • Patana AS, Kurkela M, Finel M, Goldman A. (2008). Mutation analysis in UGT1A9 suggests a relationship between substrate and catalytic residues in UDP-glucuronosyltransferases. Protein Eng Des Sel 21:537–543.
  • Radominska-Pandya A, Bratton SM, Redinbo MR, Miley MJ. (2010). The crystal structure of human UDP-glucuronosyltransferase 2B7 C-terminal end is the first mammalian UGT target to be revealed: The significance for human UGTs from both the 1A and 2B families. Drug Metab Rev 42:133–144.
  • Shao H, He X, Achnine L, Blount JW, Dixon RA, Wang X. (2005). Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Plant Cell 17:3141–3154.
  • Smith PA, Sorich MJ, Low LS, McKinnon RA, Miners JO. (2004). Towards integrated ADME prediction: Past, present and future directions for modelling metabolism by UDP-glucuronosyltransferases. J Mol Graph Model 22:507–517.
  • Smith PA, Sorich MJ, McKinnon RA, Miners JO. (2003a). Pharmacophore and quantitative structure-activity relationship modeling: Complementary approaches for the rationalization and prediction of UDP-glucuronosyltransferase 1A4 substrate selectivity. J Med Chem 46:1617–1626.
  • Smith PA, Sorich MJ, McKinnon RA, Miners JO. (2003b). In silico insights: Chemical and structural characteristics associated with uridine diphosphate-glucuronosyltransferase substrate selectivity. Clin Exp Pharmacol Physiol 30:836–840.
  • Sorich MJ, Miners JO, McKinnon RA, Smith PA. (2004). Multiple pharmacophores for the investigation of human UDP-glucuronosyltransferase isoform substrate selectivity. Mol Pharmacol 65:301–308.
  • Sorich MJ, Smith PA, McKinnon RA, Miners JO. (2002). Pharmacophore and quantitative structure activity relationship modelling of UDP-glucuronosyltransferase 1A1 (UGT1A1) substrates. Pharmacogenetics 12:635–645.
  • Sorich MJ, Smith PA, Miners JO, Mackenzie PI, McKinnon RA. (2008). Recent advances in the in silico modelling of UDP glucuronosyltransferase substrates. Curr Drug Metab 9:60–69.
  • Vashishtha SC, Hawes EM, McKay G, McCann DJ. (2001). Quaternary ammonium-linked glucuronidation of 1-substituted imidazoles: Studies of human UDP-glucuronosyltransferases involved and substrate specificities. Drug Metab Dispos 29:1290–1295.
  • Wu B, Basu S, Wang X, Hu M. (2011d). Regioselective Sulfation and Glucuronidation of Phenolics: Insights into the Structural Basis. Curr Drug Metab. (E-pub)
  • Wu B, Kulkarni K, Basu S, Zhang S, Hu M. (2011a). First-pass metabolism via UDP-glucuronosyltransferase: A barrier to oral bioavailability of phenolics. J Pharm Sci 100:3655–3681.
  • Wu B, Morrow JK, Singh R, Zhang S, Hu M. (2011c). Three-dimensional quantitative structure-activity relationship studies on UGT1A9-mediated 3-O-glucuronidation of natural flavonols using a pharmacophore-based comparative molecular field analysis model. J Pharmacol Exp Ther 336:403–413.
  • Wu B, Wang X, Zhang S, Hu M. (2012). Accurate Prediction of Glucuronidation of Structurally Diverse Phenolics by Human UGT1A9 Using Combined Experimental and In Silico Approaches. Pharm Res (In Press).
  • Wu B, Xu B, Hu M. (2011b). Regioselective glucuronidation of flavonols by six human UGT1A isoforms. Pharm Res 28:1905–1918.
  • Xie S, Chen Y, Chen S, Zeng S. (2011). Structure-metabolism relationships for the glucuronidation of flavonoids by UGT1A3 and UGT1A9. J Pharm Pharmacol 63:297–304.
  • Yang M, Brazier M, Edwards R, Davis BG. (2005). High-throughput mass-spectrometry monitoring for multisubstrate enzymes: Determining the kinetic parameters and catalytic activities of glycosyltransferases. Chembiochem 6:346–357.
  • Zhang C, Bitto E, Goff RD, Singh S, Bingman CA, Griffith BR, Albermann C, Phillips GN Jr, Thorson JS. (2008). Biochemical and structural insights of the early glycosylation steps in calicheamicin biosynthesis. Chem Biol 15:842–853.
  • Zhang Z, Kochhar S, Grigorov M. (2003). Exploring the sequence-structure protein landscape in the glycosyltransferase family. Protein Sci 12:2291–2302.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.