Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 42, 2012 - Issue 12
345
Views
6
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Glutathione conjugation of busulfan produces a hydroxyl radical-trapping dehydroalanine metabolite

, , , , , , & show all
Pages 1170-1177 | Received 20 Apr 2012, Accepted 21 May 2012, Published online: 22 Jun 2012

References

  • Abe S, Kirima K, Tsuchiya K, Okamoto M, Hasegawa T, Houchi H, Yoshizumi M, Tamaki T. (2004). The reaction rate of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186)) with hydroxyl radical. Chem Pharm Bull 52:186–191.
  • Allemon AM, Buc Calderon P, Roberfroid M. (1987). Potentiation of the therapeutic activity of cyclophosphamide by an original N-acyldehydroalanine. Drugs Exp Clin Res 13:359–365.
  • Buettner GR. (1987). Spin trapping: ESR parameters of spin adducts. Free Radic Biol Med 3:259–303.
  • Buc-Calderon P, Praet M, Ruysschaert JM, Roberfroid M. (1987). Free radical modulation by N-substituted dehydroalanines, a new way to improve therapeutic activity of anticancer drugs. Cancer Treat Rev 14:379–382.
  • Buc-Calderon P, Defresne MP, Barvais C, Roberfroid M. (1989). N-acyl dehydroalanines protect from radiation toxicity and inhibit radiation carcinogenesis in mice. Carcinogenesis 10:1641–1644.
  • Buc-Calderon P, Roberfroid M. (1990). AD 5, a dehydroalanine derivative, decreases the amount of reactive oxygen species formed during nitrofurantion microsomal metabolism. Life Sci 46:207–215.
  • Buc-Calderon P, Sipe HJ Jr, Flitter W, Mason RP, Roberfroid M. (1990). N-acyl dehydroalanines scavenge oxygen radicals and inhibit in vitro free radical mediated processes. Chem Biol Interact 73:77–88.
  • Carmichael AJ, Mossoba MM, Riesz P, Rosenthal I. (1985). Food dye-sensitized photoreactions in aqueous media. Photobiochem Photobiophys 10:13–21.
  • Castro-Perez J, Plumb R, Liang L, Yang E. (2005). A high-throughput liquid chromatography/tandem mass spectrometry method for screening glutathione conjugates using exact mass neutral loss acquisition. Rapid Commun Mass Spectrom 19:798–804.
  • Chalker JM, Davis BG. (2010). Chemical mutagenesis: selective post-expression interconversion of protein amino acid residues. Curr Opin Chem Biol 14:781–789.
  • Cooper AJ, Pinto JT, Callery PS. (2011). Reversible and irreversible protein glutathionylation: biological and clinical aspects. Expert Opin Drug Metab Toxicol 7:891–910.
  • Das KC, Misra HP. (1992). Antiarrhythmic agents. Scavengers of hydroxyl radicals and inhibitors of NADPH-dependent lipid peroxidation in bovine lung microsomes. J Biol Chem 267:19172–19178.
  • Ferreira PM, Monteiro LS, Coban T, Suzen S. (2009). Comparative effect of N-substituted dehydroamino acids and α-tocopherol on rat liver lipid peroxidation activities. J Enzyme Inhib Med Chem 24:967–971.
  • Friedman M. (1999). Chemistry, biochemistry, nutrition, and microbiology of lysinoalanine, lanthionine, and histidinoalanine in food and other proteins. J Agric Food Chem 47:1295–1319.
  • Hensley K, Venkova K, Christov A. (2010). Emerging biological importance of central nervous system lanthionines. Molecules 15:5581–5594.
  • Hopkinson AC. (2009). Radical cations of amino acids and peptides: structures and stabilities. Mass Spectrom Rev 28:655–671.
  • Jeong J, Jung Y, Na S, Jeong J, Lee E, Kim MS, Choi S, Shin DH, Paek E, Lee HY, Lee KJ. (2011). Novel oxidative modifications in redox-active cysteine residues. Mol Cell Proteomics, 10, M110.000513, 1–13.
  • Joshi R, Gangabhagirathi R, Venu S, Adhikari S, Mukherjee T. (2012). Antioxidant activity and free radical scavenging reactions of gentisic acid: in-vitro and pulse radiolysis studies. Free Radic Res 46:11–20.
  • Karoui H, Hogg N, Joseph J, Kalyanaraman B. (1996). Effect of superoxide dismutase mimics on radical adduct formation during the reaction between peroxynitrite and thiols–an ESR-spin trapping study. Arch Biochem Biophys 330:115–124.
  • Kim JS, Kim HJ. (2001). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric observation of a peptide triplet induced by thermal cleavage of cystine. Rapid Commun Mass Spectrom 15:2296–2300.
  • Kumar SS, Devasagayam TP, Bhushan B, Verma NC. (2001). Scavenging of reactive oxygen species by chlorophyllin: an ESR study. Free Radic Res 35:563–574.
  • Leonard SS, Xia C, Jiang BH, Stinefelt B, Klandorf H, Harris GK, Shi X. (2003). Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochem Biophys Res Commun 309:1017–1026.
  • Linetsky M, LeGrand RD. (2005). Glutathionylation of lens proteins through the formation of thioether bond. Mol Cell Biochem 272:133–144.
  • Logan DT, Andersson J, Sjöberg BM, Nordlund P. (1999). A glycyl radical site in the crystal structure of a class III ribonucleotide reductase. Science 283:1499–1504.
  • Mantena SK, Unnikrishnan MK, Joshi R, Radha V, Devi PU, Mukherjee T. (2008). In vivo radioprotection by 5-aminosalicylic acid. Mutat Res 650:63–79.
  • Mariott PR, Perkins MJ, Griller D. (1980). Spin trapping of hydroxyl in water: a kinetic evaluation of two popular traps. Canadian J Chem, 58, 803–807.
  • Misra HP, Rabideau C. (2000). Pirfenidone inhibits NADPH-dependent microsomal lipid peroxidation and scavenges hydroxyl radicals. Mol Cell Biochem 204:119–126.
  • Nagao J, Shioya K, Harada Y, Okuda K, Zendo T, Nakayama J, Sonomoto K. (2011). Engineering unusual amino acids into peptides using lantibiotic synthetase. Methods Mol Biol 705:225–236.
  • Naidu BN, Sorenson ME, Connolly TP, Ueda Y. (2003). Michael addition of amines and thiols to dehydroalanine amides: a remarkable rate acceleration in water. J Org Chem 68:10098–10102.
  • Naito Y, Yoshikawa T, Tanigawa T, Sakurai K, Yamasaki K, Uchida M, Kondo M. (1995). Hydroxyl radical scavenging by rebamipide and related compounds: electron paramagnetic resonance study. Free Radic Biol Med 18:117–123.
  • Nauser T, Koppenol WH, Gebicki JM. (2005). The kinetics of oxidation of GSH by protein radicals. Biochem J 392:693–701.
  • Okada Y, Okajima H, Shima Y, Ohta H. (2002). Hydroxyl radical scavenging action of capsaicin. Redox Rep 7:153–157.
  • Osburn S, Steill JD, Oomens J, O’Hair RA, van Stipdonk M, Ryzhov V. (2011). Structure and reactivity of the cysteine methyl ester radical cation. Chemistry 17:873–879.
  • Rangachari V, Davey ZS, Healy B, Moore BD, Sonoda LK, Cusack B, Maharvi GM, Fauq AH, Rosenberry TL. (2009). Rationally designed dehydroalanine (DeltaAla)-containing peptides inhibit amyloid- β (Abeta) peptide aggregation. Biopolymers 91:456–465.
  • Roberfroid M, Buc Calderon P. (1995). Captodative olefins. Free radicals and oxidation phenomena in biological systems. New York: Marcel Dekker, 225–231.
  • Sakurai K, Sasabe H, Koga T, Konishi T. (2004). Mechanism of hydroxyl radical scavenging by rebamipide: identification of mono-hydroxylated rebamipide as a major reaction product. Free Radic Res 38:487–494.
  • Seebach D. (1979). Methods of reactivity umpolung. Angewandte Chemie, 18, 239–258.
  • Shi H, Zhao B, Xin W. (1995). Scavenging effects of baicalin on free radicals and its protection on erythrocyte membrane from free radical injury. Biochem Mol Biol Int 35:981–994.
  • Shi X, Ye J, Leonard SS, Ding M, Vallyathan V, Castranova V, Rojanasakul Y, Dong Z. (2000). Antioxidant properties of (-)-epicatechin-3-gallate and its inhibition of Cr(VI)-induced DNA damage and Cr(IV)- or TPA-stimulated NF-κB activation. Mol Cell Biochem 206:125–132.
  • Sipe HJ, Buc-Calderon P, Roberfroid M, Mason RP. (1993). Identification of the free radical formed by addition of hydroxyl radical to dehydroalanine compounds. Chem Biol Interact 86:93–102.
  • Sit CS, Yoganathan S, Vederas JC. (2011). Biosynthesis of aminovinyl-cysteine-containing peptides and its application in the production of potential drug candidates. Acc Chem Res 44:261–268.
  • Viehe HG, Janousek Z, Merenyi R, Stella L. (1985). The captodative effect. Acc Chem Res 18:148–154.
  • Viehe HG, Merenyi R, Stella L, Janousek Z. (1979). Capto-dative substituent effects in synthesis with radicals and radicophiles. Agnew Chem, 18:917–932.
  • Vo TK, Fischer SM, Slaga TJ. (1991). Effects of N-acyl dehydroalanines on phorbol ester-elicited tumor development and other events in mouse skin. Cancer Lett 60:25–32.
  • Wang Z, Rejtar T, Zhou ZS, Karger BL. (2010). Desulfurization of cysteine-containing peptides resulting from sample preparation for protein characterization by mass spectrometry. Rapid Commun Mass Spectrom 24:267–275.
  • Ye J, Ding M, Zhang X, Rojanasakul Y, Shi X. (2000). On the role of hydroxyl radical and the effect of tetrandrine on nuclear factor–κB activation by phorbol 12-myristate 13-acetate. Ann Clin Lab Sci 30:65–71.
  • Younis IR, Elliott M, Peer CJ, Cooper AJ, Pinto JT, Konat GW, Kraszpulski M, Petros WP, Callery PS. (2008). Dehydroalanine analog of glutathione: an electrophilic busulfan metabolite that binds to human glutathione S-transferase A1-1. J Pharmacol Exp Ther 327:770–776.
  • Zang LY, Cosma G, Gardner H, Castranova V, Vallyathan V. (2003). Effect of chlorogenic acid on hydroxyl radical. Mol Cell Biochem 247:205–210.
  • Zhu M, Ma L, Zhang H, Humphreys WG. (2007). Detection and structural characterization of glutathione-trapped reactive metabolites using liquid chromatography-high-resolution mass spectrometry and mass defect filtering. Anal Chem 79:8333–8341.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.