Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 43, 2013 - Issue 4
395
Views
10
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Transport of gemifloxacin, a 4th generation quinolone antibiotic, in the Caco-2 and engineered MDCKII cells, and potential involvement of efflux transporters in the intestinal absorption of the drug

, , , , , , & show all
Pages 355-367 | Received 25 Jun 2012, Accepted 09 Aug 2012, Published online: 28 Sep 2012

References

  • Allen JD, van Loevezijn A, Lakhai JM, van der Valk M, van Tellingen O, Reid G, Schellens JH, Koomen GJ, Schinkel AH. (2002). Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther 1:417–425.
  • Alvarez AI, Pérez M, Prieto JG, Molina AJ, Real R, Merino G. (2008). Fluoroquinolone efflux mediated by ABC transporters. J Pharm Sci 97:3483–3493.
  • Artursson P, Karlsson J. (1991). Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun 175:880–885.
  • Balaji V, Poongothai S, Madhavi B, Reddy R, Naidu PY, Karrunakaran CM, Ilavarasan R.. (2010). Development and validation of a dissolution test with spectrophotometric analysis for gemifloxacin in tablet dosage form. Pharma science monitor, An international journal of pharmaceutical sciences Online Published 581–594.
  • Ball P. (2000). Quinolone generations: natural history or natural selection? J Antimicrob Chemother 46 Suppl T1:17–24.
  • Cvetkovic M, Leake B, Fromm MF, Wilkinson GR, Kim RB. (1999). OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos 27:866–871.
  • de Lannoy IA, Silverman M. (1992). The MDR1 gene product, P-glycoprotein, mediates the transport of the cardiac glycoside, digoxin. Biochem Biophys Res Commun 189:551–557.
  • Drlica K, Malik M. (2003). Fluoroquinolones: action and resistance. Curr Top Med Chem 3:249–282.
  • Drusano GL, Standiford HC, Plaisance K, Forrest A, Leslie J, Caldwell J. (1986). Absolute oral bioavailability of ciprofloxacin. Antimicrob Agents Chemother 30:444–446.
  • Fish DN, Chow AT. (1997). The clinical pharmacokinetics of levofloxacin. Clin Pharmacokinet 32:101–119.
  • Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L; International Transporter Consortium. (2010). Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236.
  • Grasela DM. (2000). Clinical pharmacology of gatifloxacin, a new fluoroquinolone. Clin Infect Dis 31 Suppl 2:S51–S58.
  • Griffiths NM, Hirst BH, Simmons NL. (1993). Active secretion of the fluoroquinolone ciprofloxacin by human intestinal epithelial Caco-2 cell layers. Br J Pharmacol 108:575–576.
  • Hong CY. (2001). Discovery of gemifloxacin (Factive, LB20304a): a quinolone of a new generation. Farmaco 56:41–44.
  • Hooper DC. (2002). Fluoroquinolone resistance among Gram-positive cocci. Lancet Infect Dis 2:530–538.
  • Horibe S, Takara K, Minegaki T, Ohnishi N, Yokoyama T. (2009). Distribution of Abcg2 (BCRP) and Abcc2 (MRP2) mRNAs in rat small intestine and liver. EXCLI Journal 8:12–19.
  • Horikawa M, Kato Y, Tyson CA, Sugiyama Y. (2002). The potential for an interaction between MRP2 (ABCC2) and various therapeutic agents: probenecid as a candidate inhibitor of the biliary excretion of irinotecan metabolites. Drug Metab Pharmacokinet 17:23–33.
  • Jacobs MR, Felmingham D, Appelbaum PC, Grüneberg RN; Alexander Project Group. (2003). The Alexander Project 1998-2000: susceptibility of pathogens isolated from community-acquired respiratory tract infection to commonly used antimicrobial agents. J Antimicrob Chemother 52:229–246.
  • Jariyawat S, Sekine T, Takeda M, Apiwattanakul N, Kanai Y, Sophasan S, Endou H. (1999). The interaction and transport of beta-lactam antibiotics with the cloned rat renal organic anion transporter 1. J Pharmacol Exp Ther 290:672–677.
  • Katneni K, Charman SA, Porter CJ. (2008). An evaluation of the relative roles of the unstirred water layer and receptor sink in limiting the in-vitro intestinal permeability of drug compounds of varying lipophilicity. J Pharm Pharmacol 60:1311–1319.
  • Lamp KC, Bailey EM, Rybak MJ. (1992). Ofloxacin clinical pharmacokinetics. Clin Pharmacokinet 22:32–46.
  • Landersdorfer CB, Kirkpatrick CM, Kinzig M, Bulitta JB, Holzgrabe U, Drusano GL, Sörgel F. (2009). Competitive inhibition of renal tubular secretion of gemifloxacin by probenecid. Antimicrob Agents Chemother 53:3902–3907.
  • Letschert K, Faulstich H, Keller D, Keppler D. (2006). Molecular characterization and inhibition of amanitin uptake into human hepatocytes. Toxicol Sci 91:140–149.
  • LG Life Sciences LPIGP. (2003). Factive (Gemifloxacin) for the treatment of acute exacerbations of chronic bronchitis and community-acquired pneumonia NDA #21–158 Briefing Document.
  • Li H, Chung SJ, Kim DC, Kim HS, Lee JW, Shim CK. (2001). The transport of a reversible proton pump antagonist, 5, 6-dimethyl-2-(4-Fluorophenylamino)-4-(1-methyl-1,2,3, 4-tetrahydroisoquinoline-2-yl) pyrimidine hydrochloride (YH1885), across caco-2 cell monolayers. Drug Metab Dispos 29:54–59.
  • Li H, Jin HE, Kim W, Han YH, Kim DD, Chung SJ, Shim CK. (2008a). Involvement of P-glycoprotein, multidrug resistance protein 2 and breast cancer resistance protein in the transport of belotecan and topotecan in Caco-2 and MDCKII cells. Pharm Res 25:2601–2612.
  • Li M, Yuan H, Li N, Song G, Zheng Y, Baratta M, Hua F, Thurston A, Wang J, Lai Y. (2008b). Identification of interspecies difference in efflux transporters of hepatocytes from dog, rat, monkey and human. Eur J Pharm Sci 35:114–126.
  • Lowes S, Simmons NL. (2002). Multiple pathways for fluoroquinolone secretion by human intestinal epithelial (Caco-2) cells. Br J Pharmacol 135:1263–1275.
  • Lüders AK, Saborowski R, Bickmeyer U. (2009). Inhibition of multidrug/xenobiotic resistance transporter by MK571 improves dye (Fura 2) accumulation in crustacean tissues from lobster, shrimp, and isopod. Comp Biochem Physiol C Toxicol Pharmacol 150:368–371.
  • MacLean C, Moenning U, Reichel A, Fricker G. (2008). Closing the gaps: a full scan of the intestinal expression of p-glycoprotein, breast cancer resistance protein, and multidrug resistance-associated protein 2 in male and female rats. Drug Metab Dispos 36:1249–1254.
  • Madgula VL, Avula B, Choi YW, Pullela SV, Khan IA, Walker LA, Khan SI. (2008). Transport of Schisandra chinensis extract and its biologically-active constituents across Caco-2 cell monolayers - an in-vitro model of intestinal transport. J Pharm Pharmacol 60:363–370.
  • Maeda T, Takahashi K, Ohtsu N, Oguma T, Ohnishi T, Atsumi R, Tamai I. (2007). Identification of influx transporter for the quinolone antibacterial agent levofloxacin. Mol Pharm 4:85–94.
  • Makhey VD, Guo A, Norris DA, Hu P, Yan J, Sinko PJ. (1998). Characterization of the regional intestinal kinetics of drug efflux in rat and human intestine and in Caco-2 cells. Pharm Res 15:1160–1167.
  • Matsson P, Pedersen JM, Norinder U, Bergström CA, Artursson P. (2009). Identification of novel specific and general inhibitors of the three major human ATP-binding cassette transporters P-gp, BCRP and MRP2 among registered drugs. Pharm Res 26:1816–1831.
  • Merino G, Alvarez AI, Pulido MM, Molina AJ, Schinkel AH, Prieto JG. (2006). Breast cancer resistance protein (BCRP/ABCG2) transports fluoroquinolone antibiotics and affects their oral availability, pharmacokinetics, and milk secretion. Drug Metab Dispos 34:690–695.
  • Naruhashi K, Tamai I, Inoue N, Muraoka H, Sai Y, Suzuki N, Tsuji A. (2002). Involvement of multidrug resistance-associated protein 2 in intestinal secretion of grepafloxacin in rats. Antimicrob Agents Chemother 46:344–349.
  • Park MS, Okochi H, Benet LZ. (2011). Is Ciprofloxacin a Substrate of P-glycoprotein? Arch Drug Inf 4:1–9.
  • Rabbaa L, Dautrey S, Colas-Linhart N, Carbon C, Farinotti R. (1996). Intestinal elimination of ofloxacin enantiomers in the rat: evidence of a carrier-mediated process. Antimicrob Agents Chemother 40:2126–2130.
  • Ramji JV, Austin NE, Boyle GW, Chalker MH, Duncan G, Fairless AJ, Hollis FJ, McDonnell DF, Musick TJ, Shardlow PC. (2001). The disposition of gemifloxacin, a new fluoroquinolone antibiotic, in rats and dogs. Drug Metab Dispos 29:435–442.
  • Ranjane PN, Gandhi SV, Kadukar SS, Bothara KG. (2010). Stability indicating RP-LC method for the determination of gemifloxacin mesylate. Chromatographia 71:1113–1117.
  • Rohwedder RW, Bergan T, Thorsteinsson SB, Scholl H. (1990). Transintestinal elimination of ciprofloxacin. Diagn Microbiol Infect Dis 13:127–133.
  • Sasabe H, Kato Y, Suzuki T, Itose M, Miyamoto G, Sugiyama Y. (2004). Differential involvement of multidrug resistance-associated protein 1 and P-glycoprotein in tissue distribution and excretion of grepafloxacin in mice. J Pharmacol Exp Ther 310:648–655.
  • Shitara Y, Sugiyama D, Kusuhara H, Kato Y, Abe T, Meier PJ, Itoh T, Sugiyama Y. (2002). Comparative inhibitory effects of different compounds on rat oatpl (slc21a1)- and Oatp2 (Slc21a5)-mediated transport. Pharm Res 19:147–153.
  • Silbermann MH, Boersma AW, Janssen AL, Scheper RJ, Herweijer H, Nooter K. (1989). Effects of cyclosporin A and verapamil on the intracellular daunorubicin accumulation in Chinese hamster ovary cells with increasing levels of drug-resistance. Int J Cancer 44:722–726.
  • Soldner A, Benet LZ, Mutschler E, Christians U. (2000). Active transport of the angiotensin-II antagonist losartan and its main metabolite EXP 3174 across MDCK-MDR1 and caco-2 cell monolayers. Br J Pharmacol 129:1235–1243.
  • Sörgel F, Jaehde U, Naber K, Stephan U. (1989). Pharmacokinetic disposition of quinolones in human body fluids and tissues. Clin Pharmacokinet 16 Suppl 1:5–24.
  • Stephens RH, O’Neill CA, Warhurst A, Carlson GL, Rowland M, Warhurst G. (2001). Kinetic profiling of P-glycoprotein-mediated drug efflux in rat and human intestinal epithelia. J Pharmacol Exp Ther 296:584–591.
  • Taipalensuu J, Törnblom H, Lindberg G, Einarsson C, Sjöqvist F, Melhus H, Garberg P, Sjöström B, Lundgren B, Artursson P. (2001). Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2 cell monolayers. J Pharmacol Exp Ther 299:164–170.
  • Tamai I, Yamashita J, Kido Y, Ohnari A, Sai Y, Shima Y, Naruhashi K, Koizumi S, Tsuji A. (2000). Limited distribution of new quinolone antibacterial agents into brain caused by multiple efflux transporters at the blood-brain barrier. J Pharmacol Exp Ther 295:146–152.
  • Urakami Y, Akazawa M, Saito H, Okuda M, Inui K. (2002). cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J Am Soc Nephrol 13:1703–1710.
  • Uwai Y, Okuda M, Takami K, Hashimoto Y, Inui K. (1998). Functional characterization of the rat multispecific organic anion transporter OAT1 mediating basolateral uptake of anionic drugs in the kidney. FEBS Lett 438:321–324.
  • Vadlapatla RK, Vadlapudi AD, Kwatra D, Pal D, Mitra AK. (2011). Differential effect of P-gp and MRP2 on cellular translocation of gemifloxacin. Int J Pharm 420:26–33.
  • van Loevezijn A, Allen JD, Schinkel AH, Koomen GJ. (2001). Inhibition of BCRP-mediated drug efflux by fumitremorgin-type indolyl diketopiperazines. Bioorg Med Chem Lett 11:29–32.
  • Vance-Bryan K, Guay DR, Rotschafer JC. (1990). Clinical pharmacokinetics of ciprofloxacin. Clin Pharmacokinet 19:434–461.
  • Vanwert AL, Srimaroeng C, Sweet DH. (2008). Organic anion transporter 3 (oat3/slc22a8) interacts with carboxyfluoroquinolones, and deletion increases systemic exposure to ciprofloxacin. Mol Pharmacol 74:122–131.
  • Vousden M, Allen A, Lewis A, Ehren N. (1999). Lack of pharmacokinetic interaction between gemifloxacin and digoxin in healthy elderly volunteers. Chemotherapy 45:485–490.
  • Yague G, Morris JE, Pan XS, Gould KA, Fisher LM. (2002). Cleavable-complex formation by wild-type and quinolone-resistant Streptococcus pneumoniae type II topoisomerases mediated by gemifloxacin and other fluoroquinolones. Antimicrob Agents Chemother 46:413–419.
  • Yamaguchi H, Yano I, Hashimoto Y, Inui KI. (2000). Secretory mechanisms of grepafloxacin and levofloxacin in the human intestinal cell line caco-2. J Pharmacol Exp Ther 295:360–366.
  • Yamaguchi H, Yano I, Saito H, Inui K. (2002). Pharmacokinetic role of P-glycoprotein in oral bioavailability and intestinal secretion of grepafloxacin in vivo. J Pharmacol Exp Ther 300:1063–1069.
  • Yasui-Furukori N, Uno T, Sugawara K, Tateishi T. (2005). Different effects of three transporting inhibitors, verapamil, cimetidine, and probenecid, on fexofenadine pharmacokinetics. Clin Pharmacol Ther 77:17–23.
  • Yuk JH, Nightingale CH, Quintiliani R, Sweeney KR. (1991). Bioavailability and pharmacokinetics of ofloxacin in healthy volunteers. Antimicrob Agents Chemother 35:384–386.
  • Zhanel GG, Noreddin AM. (2001). Pharmacokinetics and pharmacodynamics of the new fluoroquinolones: focus on respiratory infections. Curr Opin Pharmacol 1:459–463.
  • Zhang L, Strong JM, Qiu W, Lesko LJ, Huang SM. (2006). Scientific perspectives on drug transporters and their role in drug interactions. Mol Pharm 3:62–69.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.