Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 43, 2013 - Issue 1
289
Views
10
CrossRef citations to date
0
Altmetric
Review Article

Use of precision-cut renal cortical slices in nephrotoxicity studies

, , , , , & show all
Pages 54-62 | Received 30 Jul 2012, Accepted 24 Aug 2012, Published online: 03 Oct 2012

References

  • Bach PH, Lock EA. (1982). The use of renal tissue slices, perfusion and infusion techniques to assess nephrotoxicity related changes. In: Bach PH, Bonner FW, Bridges JW, Lock EA, eds. Nephrotoxicity: Assessment and Pathogenesis. New York: John Wiley & Sons, 128–143.
  • Bach PH, Vickers AEM, Fisher R, Baumann A, Brittebo E, Carlile DJ, Koster HJ, Lake BG, Salmon F, Sawyer TW, Skibinski G. (1996). The use of tissue slices for pharmacotoxicology studies – The report and recommendations of ECVAM workshop 20. Altern Lab Anim 24:893–923.
  • Baverel G, Bonnard M, D’Armagnac de Castanet E, Pellet M. (1978). Lactate and pyruvate metabolism in isolated renal tubules of normal dogs. Kidney Int 14:567–575.
  • Baverel G, Lund P. (1979). A role for bicarbonate in the regulation of mammalian glutamine metabolism. Biochem J 184:599–606.
  • Bergmeyer HU, Bernt E. (1974). Lactate dehydrogenase: UV assay with pyruvate and NADH. In: Bergmeyer H, ed. Methods of Enzymatic Analysis. New York: Academic Press, 574–579.
  • Berndt WO. (1987). Renal slices and perfusion. In: Bach PH, Lock EA, eds. Nephrotoxicity: Assessment and Pathogenesis. New York: John Wiley & Sons, 505–518.
  • Berry MN, Friend DS. (1969). High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol 43:506–520.
  • Canioni P, Alger JR, Shulman RG. (1983). Natural abundance Carbon-13 nuclear magnetic resonance spectroscopy of liver and adipose tissue of the living rat. Biochemistry 22:4974–4980.
  • Conjard A, Dugelay S, Chauvin MF, Durozard D, Baverel G, Martin G. (2002). The anaplerotic substrate alanine stimulates acetate incorporation into glutamate and glutamine in rabbit kidney tubules. A (13)C NMR study. J Biol Chem 277:29444–29454.
  • Coulter DL, Allen RJ. (1980). Secondary hyperammonaemia: a possible mechanism for valproate encephalopathy. Lancet 1:1310–1311.
  • Craft AW, Pearson AD. (1989). Three decades of chemotherapy for childhood cancer: from cure ‘at any cost’ to cure ‘at least cost’. Cancer Surv 8:605–629.
  • Dechant KL, Brogden RN, Pilkington T, Faulds D. (1991). Ifosfamide/mesna. A review of its antineoplastic activity, pharmacokinetic properties and therapeutic efficacy in cancer. Drugs 42:428–467.
  • Dubourg L, Michoudet C, Cochat P, Baverel G. (2001). Human kidney tubules detoxify chloroacetaldehyde, a presumed nephrotoxic metabolite of ifosfamide. J Am Soc Nephrol 12:1615–1623.
  • Dugelay S, Chauvin MF, Megnin-Chanet F, Martin G, Laréal MC, Lhoste JM, Baverel G. (1999). Acetate stimulates flux through the tricarboxylic acid cycle in rabbit renal proximal tubules synthesizing glutamine from alanine: a 13C NMR study. Biochem J 342 Pt 3:555–566.
  • Durozard D, Baverel G. (1987). Gas chromatographic method for the measurement of sodium valproate utilization by kidney tubules. J Chromatogr 414:460–464.
  • Durozard D, Martin G, Baverel G. (1991). Valproate-induced alterations of coenzyme A and coenzyme A ester concentrations in human kidney tubules metabolizing glutamine. Contrib Nephrol 92:103–108.
  • Elhamri M, Ferrier B, Martin M, Baverel G. (1993). Effect of valproate, sodium 2-propyl-4-pentenoate and sodium 2-propyl-2-pentenoate on renal substrate uptake and ammoniagenesis in the rat. J Pharmacol Exp Ther 266:89–96.
  • Ferrier B, Martin M, Baverel G. (1988). Valproate-induced stimulation of renal ammonia production and excretion in the rat. J Clin Chem Clin Biochem 26:65–67.
  • Goren MP, Pratt CB, Viar MJ. (1989). Tubular nephrotoxicity during long-term ifosfamide and mesna therapy. Cancer Chemother Pharmacol 25:70–72.
  • Goren MP, Wright RK, Pratt CB, Horowitz ME, Dodge RK, Viar MJ, Kovnar EH. (1987). Potentiation of ifosfamide neurotoxicity, hematotoxicity, and tubular nephrotoxicity by prior cis-diamminedichloroplatinum(II) therapy. Cancer Res 47:1457–1460.
  • Graaf IA, Groothuis GM, Olinga P. (2007). Precision-cut tissue slices as a tool to predict metabolism of novel drugs. Expert Opin Drug Metab Toxicol 3:879–898.
  • Griffith OW. (1985). Glutathione and glutathione disulfide. In: Bergmeyer HU, Bergmeyer J, Grassl M, eds. Methods of Enzymatic Analysis. Weinheim: VCH Verlagsgesellschaft, 521–529.
  • Guder WG, Ross BD. (1984). Enzyme distribution along the nephron. Kidney Int 26:101–111.
  • Hirsch GH. (1976). Differential effects of nephrotoxic agents on renal transport and metabolism by use of in vitro techniques. Environ Health Perspect 15:89–99.
  • Howarth OW, Lilley DMJ. (1978). Carbon-13-NMR of peptides and proteins. Prog NMR Spectrosc 12:1–40.
  • Knouzy B, Dubourg L, Baverel G, Michoudet C. (2010). Targets of chloroacetaldehyde-induced nephrotoxicity. Toxicol In Vitro 24:99–107.
  • Krebs HA, Henseleit K. (1932). Untersuchungen über die Harnstoffbildung im Tierkörper. Hoppe-Seyler’s Zeitschrift für. Physiol Chemie 210:33–66.
  • Krumdieck CL, dos Santos JE, Ho KJ. (1980). A new instrument for the rapid preparation of tissue slices. Anal Biochem 104:118–123.
  • Lamprecht W, Trautchold I. (1974). Adenosine-5’-triphosphate. Determination with hexokinase and glucose-6-phosphate dehydrogenase. In: Bergmeyer H, ed. Methods of Enzymatic Analysis. New York: Academic Press, 2101–2110.
  • Latzko E, Gibbs M. (1974). Alkaline C1-fructose-1,6-disphosphatase. In: Bergmeyer HU, Gawehen K, eds. Methods of Enzymatic Analysis. Weinheim: Verlag Chemie, 881–884.
  • Lerche-Langrand C, Toutain HJ. (2000). Precision-cut liver slices: characteristics and use for in vitro pharmaco-toxicology. Toxicology 153:221–253.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275.
  • Martin G, Chauvin MF, Baverel G. (1997). Model applicable to NMR studies for calculating flux rates in five cycles involved in glutamate metabolism. J Biol Chem 272:4717–4728.
  • Martin G, Chauvin MF, Dugelay S, Baverel G. (1994). Non-steady state model applicable to NMR studies for calculating flux rates in glycolysis, gluconeogenesis, and citric acid cycle. J Biol Chem 269:26034–26039.
  • Nicholson JK, Lindon JC, Holmes E. (1999). ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189.
  • Nissim I, Horyn O, Daikhin Y, Nissim I, Luhovyy B, Phillips PC, Yudkoff M. (2006). Ifosfamide-induced nephrotoxicity: mechanism and prevention. Cancer Res 66:7824–7831.
  • Parrish AR, Gandolfi AJ, Brendel K. (1995). Precision-cut tissue slices: applications in pharmacology and toxicology. Life Sci 57:1887–1901.
  • Passonneau JV, Lowry OH. (1993). Enzymatic analysis: a practical guide. Totowa: The Humana Press Inc.
  • Powell-Jackson PR, Tredger JM, Williams R. (1984). Hepatotoxicity to sodium valproate: a review. Gut 25:673–681.
  • Rossi R, Kleta R, Ehrich JH. (1999a). Renal involvement in children with malignancies. Pediatr Nephrol 13:153–162.
  • Rossi R, Pleyer J, Schäfers P, Kuhn N, Kleta R, Deufel T, Jürgens H. (1999b). Development of ifosfamide-induced nephrotoxicity: prospective follow-up in 75 patients. Med Pediatr Oncol 32:177–182.
  • Sakai A, Shimizu H, Kono K, Furuya E. (2005). Monochloroacetic acid inhibits liver gluconeogenesis by inactivating glyceraldehyde-3-phosphate dehydrogenase. Chem Res Toxicol 18:277–282.
  • Shaka AJ, Keeler J, Freeman R. (1983). Evaluation of a New Broad-Band Decoupling Sequence - Waltz-16. J Magn Reson 53:313–340.
  • Simon D, Penry JK. (1975). Sodium di-N-propylacetate (DPA) in the treatment of epilepsy. A review. Epilepsia 16:549–573.
  • Skinner R, Pearson AD, Price L, Coulthard MG, Craft AW. (1990). Nephrotoxicity after ifosfamide. Arch Dis Child 65:732–738.
  • Stevens MC, Brandis M. (1993). Incidence and etiology of ifosfamide nephrotoxicity: report of a meeting held in Rhodes, Greece, October 3, 1991, sponsored by Asta Medica, Frankfurt, Germany. Med Pediatr Oncol 21:640–644.
  • Suarez A, Mcdowell H, Niaudet P, Comoy E, Flamant F. (1991). Long-term follow-up of ifosfamide renal toxicity in children treated for malignant mesenchymal tumors - an International Society of Pediatric Oncology Report. J Clin Oncol 9:2177–21782.
  • Vickers AE, Fisher RL. (2004). Organ slices for the evaluation of human drug toxicity. Chem Biol Interact 150:87–96.
  • Vickers AE, Fisher RL. (2005). Precision-cut organ slices to investigate target organ injury. Expert Opin Drug Metab Toxicol 1:687–699.
  • Vittorelli A, Gauthier C, Michoudet C, Martin G, Baverel G. (2005). Characteristics of glutamine metabolism in human precision-cut kidney slices: a 13C-NMR study. Biochem J 387:825–834.
  • Wagner T. (1994). Ifosfamide clinical pharmacokinetics. Clin Pharmacokinet 26:439–456.
  • Warburg O. (1923). Tests on surviving carcinoma cultures. Biochemische Zeitschrift 142:317–333.
  • Warter JM, Marescaux C, Chabrier G, Rumbach L, Micheletti B, Imler M. (1984). Renal glutamine metabolism in man during treatment with sodium valproate. Rev Neurol (Paris) 140:370–371.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.