Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 21, 1991 - Issue 8
11
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Effect of phenobarbital and 3-methylcholanthrene on the early oxidative stress component induced by lindane in rat liver

, , , , , & show all
Pages 1053-1065 | Received 12 Jun 1990, Published online: 22 Sep 2008

References

  • Arias I. M., Fleischner G., Kirsch R., Mishkin S., Gatmaitan Z. On the structure, regulation and function of ligandin. Glutathione: Metabolism and Function, I. M. Arias, W. B. Jakoby. Raven, New York 1976; 175–188
  • Auclair C., De Prost D., Hakim J. Superoxide anion production by liver microsomes from phenobarbital treated rat. Biochemical Pharmacology 1978; 27: 355–358
  • Aust S. Lipid peroxidation. CRC Handbook of Methods for Oxygen Radical Research, R. A. Greenwald. CRC Press, Boca Raton 1985; 203–207
  • Baker M. T., Nelson R. M., Van Dyke R. A. The formation of chlorobenzene and benzene by the reductive metabolism of lindane in rat liver microsomes. Archives of Biochemistry and Biophysics 1985; 236: 506–514
  • Ball C. R. Estimation and identification of thiols in rat spleen after cystein or glutathione treatment: relevance to protection against nitrogen mustards. Biochemical Pharmacology 1966; 15: 809–816
  • Baars A. J., Jansen M., Breimer D. D. The influence of phenobarbital. 3-methylcholanthrene and 3,3,7,8-tetrachlorodibenzo-p-dioxin on glutathione-S-transferase activity of rat cytosol. Biochemical Pharmacology 1978; 27: 2487–2494
  • Barros S. B. M., Videla L. A., Simizu K., Van Halsema L., Junqueira V. B. C. Lindane-induced oxidative stress. II. Time course study of changes in hepatic glutathione status. Xenobiotica 1988; 18: 1305–1310
  • Bernt E., Bergmeyer H. U. Glutathione. Methods of Enzymatic Analysis, H. U. Bergmeyer. Academic Press, New York 1974; vol. 4: 1643–1647
  • Beutler E. Catalase. Red Cell Metabolism—A Manual of Biochemical Methods. Grune & Stratton, New York 1975; 89–90
  • Burk R. F. Glutathione-dependent protection by rat liver microsomal protein against lipid peroxidation. Biochimica et Biophysica Acta 1983; 757: 21–28
  • Chadwick R. W., Copeland M. F., Carlson G. P., Trela B. A., Most B. M. Comparison of in vivo and in vitro methods for assessing the effects of phenobarbital on the hepatic drug-metabolizing enzyme system. Toxicology Letters 1985; 29: 95–105
  • Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiological Reviews 1979; 59: 527–605
  • Chianale J., Dvorak C., May M., Gumucio J. J. Heterogeneous expression of phenobarbital-inducible cytochrome P450 genes within the hepatic acinus in the rat. Hepatology 1986; 6: 945–951
  • Ernster L., Lind C., Nordenbrand K., Thor H., Orrenius S. NADPH-cytochrome P450 reductase as a superoxide-radical generator. Oxygenases and Oxygen Metabolism, M. Nozaki, S. Yamamoto, Y. Ishimura, M. J. Coon, L. Ernster, R. W. Estabrook. Academic Press, New York 1982; 357–370
  • Fernandez V., Barrientos X., Kipreos K., Valenzuela A., Videla L. A. Superoxide radical generation, NADPH oxidase activity and cytochrome P450 content of rat liver microsomal fractions in an experimental hypetthyroid state: relation to lipid peroxidation. Endocrinology 1985; 117: 496–501
  • Fong K. L., McCay P. B., Poyer J. L., Keele B. B., Misra H. Evidence that peroxidation of lysosomal membranes is initiated by hydroxyl free radicals produced during flavin enzyme activity. Journal of Biological Chemistry 1973; 248: 7792–7797
  • Fraga C. G., Llesuy S. F., Boveris A. Increased carbon tetrachloride-stimulated chemiluminescence in the in situ liver of barnital-treated mice. Acta Physiologica y Pharmacalogica Latinoamericana 1984; 34: 143–150
  • Freeman B. A., Crapo J. D. Free radicals and tissue injury. Advances in the Biology of Disease, E. Rubim, I. Damjanov. Willians and Wilkins, Baltimore 1984; vol. 1: 26–40
  • Gillette J. R., Brodif B. B., La Du B. N. The oxidation of drugs by liver microsomes: on the role of TPNH and oxygen. Journal of Pharmacology and Experimental Therapeutics 1957; 119: 532–539
  • Gumucio J. J., Miller D. L. Functional implications of liver cell heterogeneity. Gastroenterology 1981; 80: 393–403
  • Junqueira V. B. C., Simizu K., Videla L. A., Barros S. B. M. Dose-dependent study of the effect of acute lindane administration on rat liver superoxide anion production, ant ioxidant enzyme activities and lipid peroxidation. Toxicology 1986; 41: 193–204
  • Junqueira V. B. C., Simizu K., Van Halsema L., Koch O., Barros S. B. M., Videla L. A. Lindane-induced oxidative stress. I. Time course of changes in hepatic microsomal parameters, antioxidant eznymes, lipid peroxidative indices and morphological characteristics. Xenobiotica 1988; 18: 1297–1304
  • Kaplowitz N. Physiologic significance of the glutathione-S-transferases. American Journal of Physiology 1980; 239: 439–444
  • Kaplowitz N., Aw T. Y., Ookhtens M. The regulation of hepatic glutathione. Annual Review of Pharmacology and Toxicology 1985; 25: 715–744
  • Klaassen C. D. Biliary flow after microsomal enzyme induction. Journal of Pharmacology and Experimental Therapeutics 1969; 168: 218–223
  • Klaassen C. D. Studies on the increased biliary flow produced by phenobarbital in rats. Journal of Pharmacology and Experimental Therapeutics 1971; 176: 743–751
  • Koransky W., Portig J., Vohland H. W., Klempau I. Die elimination von α-und γ-hexachlorcyclohexan und ihre beeinflussung durch enzyme der lebermikrosomen. Naunyn-Schmiedebergs Archiv fur Experimentelle Pathologie und Pharmakologie 1964; 247: 49–60
  • Kulkarni A., Fabacher D. L., Hodgson E. Induction of hepatic xenobiotic metabolizing enzymes by pesticides. II. Glutathione-S-transferase. Toxicology and Applied Pharmacology 1978; 45: 321
  • Kurihara N., Tanaka K., Nakajima M. Mercapturic acid formation from lindane in rats. Pesticide Biochemistry and Physiology 1979; 10: 137–150
  • Layne E. Spectrophotometric and turbidimetric methods for measuring proteins. Methods in Enzymology, S. P. Colowick, N. O. Kaplan. Academic Press, New York 1957; vol. 3: 447–454
  • Lu A. Y. H., Junk K. W., Coon M. Resolution of the cytochrome P-450 containing-hydroxylation system of liver microsomes into three components. Journal of Biological Chemistry 1969; 244: 3714–3721
  • MacDonald T. L. Chemical mechanisms of halocarbon metabolism. Critical Reviews in Toxicology. Chemical Rubber Company, Cleveland 1983; vol. 2: 85–120
  • Madhukar B. V., Matsumura F. Comparison of induction patterns of rat hepatic microsomal mixed-function oxidases by pesticides and related chemicals. Pesticide Biochemistry and Physiology 1979; 11: 301–308
  • McCord J. M., Fridovich I. Superoxide dismutase: an enzymic function for erythrocuprein. Journal of Biological Chemistry 1969; 244: 6049–6055
  • Misra H. P., Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry 1972; 247: 3170–3175
  • Nebert D. W., Gonzalez F. J. P450 genes: structure, evolution and regulation. Annual Review of Biochemistry 1987; 56: 945–993
  • Omura T., Sato R. The carbon-monoxide pigment of liver micrcsomes. I. Evidence for its hemoprotein nature. Journal of Biological Chemistry 1964; 239: 2370–2378
  • Parke D. Activation mechanisms to chemical toxicity. Archives of Toxicology 1987; 60: 5–15
  • Phillips A. H., Langdon R. G. Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization and kinetic studies. Journal of Biological Chemistry 1962; 237: 2652–2660
  • Sies H. Biochemistry of oxidative stress. Angew Chemistry International Edition English 1986; 25: 1058–1071
  • Sies H., Bartoli G. M., Burk R. F., Waydhas C. Glutathione efflux from perfused rat liver after phenobarbital treatment, during drug oxidations and in selenium deficiency. European Journal of Biochemistry 1978; 89: 113–118
  • Sies H., Koch C. R., Martino E., Boveris A. Increased biliary glutathione disulfide release in chronically ethanol-treated rats. FEBS Letters 1979; 103: 287–290
  • Srinivasan K., Radhakrishnamurty R. Induction of liver mixed funcion oxygenase system by β and γ hexachlorocyclohexane. Indian Journal of Biochemistry and Biophysics 1983; 29: 84–91
  • Stadtman T. C. Selenium-dependent enzymes. Annual Review of Biochemistry 1980; 49: 93–110
  • Steel R. G. D., Torrie J. H. Principles and Procedures in Statistics. McGraw-Hill, New York 1960; 481
  • Stein K., Portig J., Koransky W. Oxidative transformation of hexachlorocyclohexane in rats and with rat liver microsomes. Naunyn-Schmiedeberg's Archives of Pharmacology 1977; 298: 115–128
  • Torres M., Järvisalo J., Hakim J. The liver-protective enzymes against reduced forms of oxygen in phenobarbital-treated rats. Enzyme 1981; 26: 129–135
  • Videla L. A., Fernandez V. Biochemical aspects of cellular oxidative stress. Archivos de Biologia y Medinina Experimental 1988; 21: 85–92
  • Videla L. A., Barros S. B. M., Simizu K., Junqueira V. B. C. Liver and biliary levels of glutathione and thiobarbituric acid reactants after acute lindane intoxication. Cell Biochemistry and Function 1988; 6: 47–52
  • Videla L. A., Simizu K., Barros S. B. M., Junqueira V. B. C. Mechanisms of lindane-induced hepatotoxicity: alterations of the respiratory activity and sinusoidal efflux of GSH in the isolated perfused rat liver. Xenobiotica 1991; 21: 1023–1032
  • Yamamoto T., Egashira T., Yamanaka Y., Yoshida T., Kuroiwa Y. Initial metabolism of γ-hexachlorocyclohexane (γ-HCH) by rat liver microsomes. Journal of Pharmacobio-Dynamics 1983; 6: 721–728

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.