Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 21, 1991 - Issue 11
23
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Species- and sex-related differences in the plasma clearance and metabolite formation of antipyrine. A comparative study in four animal species: Cattle, goat, rat and rabbit

, , , , &
Pages 1483-1492 | Received 06 Dec 1990, Accepted 14 Jun 1991, Published online: 22 Sep 2008

References

  • Abernethy D. R., Greenblatt D. J. Impairment of antipyrine metabolism by low-dose oral contraceptive steroids. Clinical Pharmacology and Therapeutics 1981; 29(1)106–110
  • Bässman H., Bötcher J., Schüppel R. 4,4′-Dihydroxyphenazone as a urinary metabolite of phenazone in different species including man. Naunyn-Schmiedeberg's Archives of Pharmacology 1979; 309: 203–205
  • Boobis A. R., Brodie M. J., Kahn G. C., Toverud E.-L., Bair I. A., Murray S., Davies D. S. Comparison of the in vivo and in vitro rates of formation of the three main oxidative metabolites of antipyrine in man. British Journal of Clinical Pharmacology 1981; 12: 771–777
  • Botcher J., Bässman H., Schüppel R. Quantitation and urinary pattern of 4,4′-dihydroxy-antipyrine, 4-hydroxy-antipyrine and 3-hydroxymethyl-antipyrine as main metabolites of antipyrine in man and rat. Journal of Pharmacy and Pharmacology 1982a; 34: 168–175
  • Bötcher J., Bässman H., Schüppel R. Identification of sulfates in antipyrine metabolism in man, rat and rabbit. Drug Metabolism and Disposition 1982b; 10: 90–91
  • Colby H. D. Regulation of hepatic drug and steroid metabolism by androgens and estrogens. Advances in Sex Hormone Research, J. A. Thomas, R. L. Singhai. Urban & Schwarzenberg, Baltimore-Munich 1980; Vol. 4: 27–69
  • Danhof M., Breimer D. D. Studies on the different metabolic pathways of antipyrine in man. I. Oral administration of 250, 500 and 1000 mg to healthy volunteers. British Journal of Clinical Pharmacology 1979; 8: 529–537
  • Danhof M., Krom D. P., Breimer D. D. Studies on the different metabolic pathways of antipyrine in rats: influence of phenobarbital and 3-methylcholanthrene treatment. Xenobiotica 1979; 9: 695–702
  • Danhof M., Verbeek R. M. A., van Boxtel C. J., Boeijinga K. J., Breimer D. D. Differential effects of enzyme induction on antipyrine metabolite formation. British Journal of Clinical Pharmocology 1982; 13: 379–386
  • De Backer P., Belpaire F. M., Bogaert M. G., Debackere M. Pharmacokinetics of sulfamcrazine and antipyrine in neonatal and young lambs. American Journal of Veterinary Research 1982; 43: 1744–1751
  • Depelchin B. O., Bloden S., Ansay M. Antipyrine disposition in calves. I. Effects of some drugs. Journal of Veterinary Pharmacology and Therapeutics 1987; 10: 49–53
  • Depelchin B. O., Bloden S., Michaux C., Ansay M. Effects of age, sex and breed on antipyrine disposition in calves. Research in Veterinary Science 1988; 44: 135–139
  • Loft S. Metronidazole and antipyrine as probes for the study of foreign compound metabolism. Pharmacology and Toxicology 1990; 66(Suppl. VI)1–31
  • Meada K., Kamatari T., Nagai T., Kato R. Postnatal development of constitutive forms of cytochrome P-450 in liver microsomes of male and female rats. Biochemical Pharmacology 1984; 33: 509–512
  • Meesen B. P. M., Van Deurzen E. J. M., Van Duin C. T. M., Van Gogh H., Van Miert A. S. J. P. A. M. The effect of testosterone on the plasma disappearance rates of sulphadimidine and antipyrine in castrated dwarf goats. Veterinary Quarterly 1986; 8(4)343–345
  • Miert A. S.J., Van P. A. M., Peters R. H. M., Basudde C. D. K., Nijmeijer S. M., Van Duin C. T. M., Van Gogh H., Korstanje C. Effect of trenbolone and testosterone on the plasma elimination rates of sulfamethazine, trimethoprim and antipyrine in female dwarf goats. American Journal of Veterinary Research 1988; 49(12)2060–2064
  • Nayak V. K., Kshirsagar N. A., Desai N. K., Satoskar R. S. Influence of menstrual cycle on antipyrine pharmacokinetics in healthy Indian female volunteers. British Journal of Clinical Pharmacology 1988; 26: 604–606
  • Nouws J. F. M., Meesen B. P. W., Van Gogh H., Korstanje C., Van Miert A. S. J. P. A. M. The effect of testosterone and rutting on the metabolism and pharmacokinetics of sulphadimine in goats. Journal of Veterinary Pharmacology and Therapeutics 1988; 11: 145–154
  • O'Lamhna M., Roche J. F. Recent studies with anabolic agents in steers and bulls. Manipulation of Growth in Farm Animals, J. F. Roche, D. O'Callaghan. Martinus Nijhoff-Kluwer, Boston-The Hague 1984; 85–94
  • O'Malley K., Crooks J., Duke E., Stevenson L. H. Effect of age and sex on human drug metabolism. British Medical Journal 1971; 3: 607–609
  • Quinn G. P., Axelrod J., Brodie B. B. Species, strain and sex differences in metabolism of hexobarbitone, amidopyrine, antipyrine and aniline. Biochemical Pharmacology 1958; 1: 152–159
  • Rikans L. E. Hepatic drug metabolism in female Fischer rats as a function of age. Drug Metabolism and Disposition 1989; 17: 114–116
  • Skett P. Biochemical basis of sex differences in drug metabolism. Pharmacology and Therapeutics 1988; 38: 269–304
  • Statland B. E., Astrup P., Black C. H., Oxholm E. Plasma antipyrine half-life and hepatic microsomal antipyrine hydroxylase activity in rabbits. Pharmacology 1973; 10: 329–337
  • Stegeman J. J., Chevion M. Sex differences in cytochrome P-450 and mixed function oxygenase activity in gonadally mature trout. Biochemical Pharmacology 1980; 29: 553–558
  • Teunissen M. W. E., Srivatava A. K., Breimer D. D. Influence of sex and oral contraceptive steroids on antipyrine metabolite formation. Clinical Pharmacology and Therapeutics 1982; 32: 240–246
  • Teunissen M. W. E., Van Der Meerburg-Torren J. E., Vermeulen N. P. E., Breimer D. D. Automated HPLC-determination of antipyrine and its main metabolites in plasma, saliva and urine, including 4,4′-dihydroxy-antipyrine. Journal of Chromatography (Biomedical Applications) 1983a; 278: 367–378
  • Teunissen M. W. E., Joeres R. P., Vermeulen N. P. E., Breimer D. D. Influence of 9-hydroxyelIipticine and 3-methylcholanthrene treatment on antipyrine metabolite formation in rats in vivo. Xenobiotica 1983b; 13: 223–231
  • Tufenkji A. E., Alvinerie M., Pineau T., Boulard C., Galtier P. Incidence of a subclinical fasciolasis on antipyrine clearance and metabolite excretion in sheep. Xenobiotica 1988; 18(4)357–364
  • Vesell E. S. The antipyrine test in clinical pharmacology: conceptions and misconceptions. Clinical Pharmacology and Therapeutics 1979; 26(3)275–286
  • Waxman D. J. Interactions of hepatic cytochromes P-450 with steroid hormones. Biochemical Pharmacology 1988; 37(1)71–84
  • Waxman D. J., Morrisey J. J., Leblanc G. A. Female-predominant rat hepatic P-450 forms j (IIE1) and 3 (IIA1) are under hormonal regulatory controls distinct from those of the sex-specific P-450 forms. Endocrinology 1989; 124: 2954–2966
  • Wilson K. Sex-related differences in drug disposition in man. Clinical Pharmacokinetics 1984; 9: 189–202
  • Witkamp R. F., Nijmeijer S. M., Van Duin C. T. M., Bevers M. M., Wensing Th., Van Gogh H., Van Miert A. S. J. P. A. M. Has bovine somatotropin an effect upon drug disposition? Comparative studies in goats and cattle with sulphadimidine and antipyrine after parenteral administration of BST, zeranol and proligestone. Journal of Veterinary Pharmacology and Therapeutics 1989; 12: 163–178

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.