Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 22, 1992 - Issue 6
19
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Differences in the metabolism of the antitumour agents amsacrine and its derivative CI-921 in rat and mouse

, , &
Pages 657-669 | Received 16 Oct 1991, Accepted 24 Feb 1992, Published online: 22 Sep 2008

References

  • Arlin Z. Current status of amsacrine combination chemotherapy programs in acute leukaemia. Cancer Treatment Reports 1983; 67: 967–970
  • Baguley B. C., Denny W. A., Atwell G. J., Finlay G. J., Rewcastle G. W., Twigden S. J., Wilson W. R. Synthesis, antitumour activity, and DNA binding properties of a new derivative of amsacrine, N-5-dimethyl-9-[(2-methoxy-4-methylsulfonylamino)phenylamino]-4-acridine carboxamide. Cancer Research 1984; 44: 3245–3251
  • Becker B. A., Plaa G. A. Assessment of liver function in mice. Laboratory and Animal Care 1967; 17: 267–272
  • Cain B. F., Atwell G. J. The experimental antitumour properties of three congeners of the acridinylmethanesulphonanilide (AMSA) series. European Journal of Cancer 1974; 10: 539–549
  • Cysyk R. L., Shoemaker D. D., Adamson R. H. The pharmacological disposition of 4′-(9-acridinylamino)methanesulfon-m-anisidide in mice and rats. Drug Metabolism and Disposition 1977; 5: 579–590
  • Denny W. A., Cain B. F., Atwell G. J., Hansch C., Panthananickal A., Leo A. Potential antitumor agents. 36. Quantitative relationships between experimental antitumour activity, toxicity, and structure for the general class of 9-anilinoacridine antitumour agents. Journal of Medicinal Chemistry 1982; 25: 276–315
  • Denny W. A., Atwell G. J., Baguley B. C. Potential antitumor agents. 40. Orally active 4,5-disubstituted derivatives of amsacrine. Journal of Medicinal Chemistry 1984; 27: 363–367
  • Denny W. A., Atwell G. J., Rewcastle G. W., Baguley B. C. Potential antitumor agents. 49. 5-Substituted derivatives of N-[2-dimethylamino)-ethyl]-9-aminoacridine-4-carboxamide with in vivo solid tumour activity. Journal of Medicinal Chemistry 1987; 30: 658–663
  • Gaudich K., Przybylski M. Field desorption mass spectrometric characterization of thiol conjugates related to the oxidative metabolism of 4′-(9-acridinylamino)methane-sulfon-m-anisidide. Biomedical Mass Spectrometry 1983; 10: 292–299
  • Jurlina J. L., Lindsay A., Packer J. E., Baguley B. C., Denny W. A. Redox chemistry of the 9-anilinoacridine class of antitumor agents. Journal of Medicinal Chemistry 1987; 30: 473–480
  • Kestell P., Paxton J. W., Robertson I. G. C., Evans P. C., Dormer R. A., Baguley B. C. Thiolytic cleavage and binding of the antitumour agent CI-921 in blood. Drug Metabolism and Drug Interactions 1988; 6: 327–335
  • Kestell P., Paxton J. W., Evans P. C., Young D., Jurlina J. L., Robertson I. G. C., Baguley B. C. Disposition of amsacrine and its analogue 9-(2-methoxy-4[(methyl-sulfonyl)amino]phenyl)amino)-N,5-dimethyl-4-acridinecarboxamide (CI-921) in plasma, liver and Lewis lung tumors in mice. Cancer Research 1990; 50: 503–508
  • Krishnamurthy V. V., Casida J. E., Dohn D. R. Complete spectral assignments of the pesticide metabolite S-(2,3-dihydroxy-1-propyl)glutathione. Magnetic Resonance in Chemistry 1988; 26: 542–546
  • Lee H. H., Palmer B. D., Denny W. A. Reactivity to nucleophiles of quinoneimine and quinonediimine metabolites of the antitumour drug amsacrine and related compounds. Journal of Organic Chemistry 1988; 53: 6042–6047
  • Przybylski M., Cyrsyk R. L., Shoemaker D., Adamson R. H. Identification of conjugation and cleavage products in the thiolytic metabolism of the anticancer drug 4′-(9-acridinylamino)methanesulfon-m-anisidide. Biomedical Mass Spectrometry 1981; 8: 485–491
  • Robbie M. A. Studies on the mechanism of resistance of non-cycling cells to amsacrine and related antitumour drugs. University of Auckland. 1988, PhD thesis
  • Robbie M. A., Palmer B. D., Denny W. A., Wilson W. R. The fate of N1′-methanesulphonyl-N4′(9-acridinyl)-3′-methoxy-2′,5′-cyclohexadiene-1′,4′-diimine (m-AQD1), the primary oxidative metabolite of amsacrine, in transformed Chinese hamster fibroblasts. Biochemical Pharmacology 1990; 39: 1411–1421
  • Robertson I. G. C., Kestell P., Dormer R. A., Paxton J. W. Involvement of glutathione in the metabolism of the anilinoacridine antitumour agents C1–921 and amsacrine. Drug Metabolism and Drug Interactions 1988; 6: 371–381
  • Rosi D., Peruzzotti G., Dennis E. W., Berberian D. A., Freele H., Tullar B. F., Archer S. Hycanthone, a new active metabolite of lucanthone. Journal of Medicinal Chemistry 1967; 10: 867–876
  • Shoemaker D. D., Cysyk R. L., Padmanabhan S., Bhat H. B., Malspeis L. Identification of the principal biliary metabolite of 4′-(9-acridinyl-amino)methanesulfon-m-anisidide in rats. Drug Metabolism and Disposition 1982; 10: 35–39
  • Shoemaker D. D., Cysyk R. L., Gormley P. E., De Souza J. J. V., Malspeis L. Metabolism of 4′-(9-acridinylamino)methanesulfon-m-anisidide by rat liver microsomes. Cancer Research 1984; 44: 1939–1945
  • Wilson W. R., Cain B. F., Baguley B. C. Thiolytic cleavage of the antitumour compound 4′-(9-acridinylamino)methanesulphon-m-anisidide (m-AMSA, NSC 156303) in blood. Chemico-Biological Interactions 1977; 18: 163–178

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.