Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 23, 1993 - Issue 8
91
Views
46
CrossRef citations to date
0
Altmetric
Original Article

Glutathione-dependent bioactivation of xenobiotics

&
Pages 873-887 | Received 02 Mar 1993, Accepted 30 Apr 1993, Published online: 23 Apr 2010

References

  • Anders M. W. Glutathione-dependent bioactivation of xenobiotics. Faseb Journal 1991; 4: 87–92
  • Ahmed A. E., Anders M. W. Metabolism of dihalomethanes to formaldehyde and inorganic halide—I.In vitro studies. Drug Metabolism and Disposition 1976; 4: 357–361
  • Ahmed A. E., Anders M. W. Metabolism of dihalomethanes to formaldehyde and inorganic halide—II. Studies on the mechanism of the reaction. Biochemical Pharmacology 1978; 27: 2021–2025
  • Anders M. W., Lash L. H., Dekant W., Elfarra A. A., Dohn D. R. Biosynthesis and biotransformation of glutathioneS-conjugates to toxic metabolites. CRC Critical Reviews in Toxicology 1988; 18: 311–342
  • Andersen M. E., Clewell H. J. I., Gargas M. L., Macnaughton M. G., Reitz R. H., Nolan R. J., McKenna M. J. Physiologically-based pharmacokinetic modeling with dichloromethane, its metabolite, carbon monoxide, and blood carboxyhemoglobin in rats and humans. Toxicology and Applied Pharmacology 1991; 108: 14–27
  • Birner G., Vamvakas S., Dekant W., Henschler D. Nephrotoxic and gentoxicN-acetyl-S-dichlorovinyl-L-cysteine is an urinary metabolite after occupational 1,1,2-trichloroethylene exposure in humans: implications for the risk of trichloroethylene exposure. Environmental Health Perspectives 1993; 99: 281
  • Boyland E., Chasseaud L. F. Role of glutathione and glutathioneS-transferases in mercapturic acid biosynthesis. Advances in Enzymology 1969; 32: 173
  • Cerutti P. A. Prooxidant states and tumor promotion. Science 1985; 227: 375–381
  • Cmarik J. L., Humphreys W. G., Bruner K. L., Lloyd R. S., Tibbetts C., Guengerich F. P. Mutation spectrum and sequence alkylation selectivity resulting from modification of bacteriophage M13mp18 DNA withS-(2-chloroethyl)glutathione. Evidence for a role ofS-(2-N7-guanyl)ethyl)glutathione as a mutagenic lesion formed from ethylene dibromide. Journal of Biological Chemistry 1992; 267: 6672–6679
  • Cmarik J. L., Inskeep P. B., Meredith M. J., Meyer D. J., Ketterer B., Guengerich F. P. Selectivity of rat and human glutathioneS-transferases in activation of ethylene dibromide by glutathione conjugation and DNA binding and induction of unscheduled DNA synthesis in human hepatocytes. Cancer Research 1990; 50: 2747–2752
  • Commandeur J. N. M., Boogard P. J., Mulder G. J., Vermeulen N. P. E. Mutagenicity and cytotoxicity of two regioisomeric mercapturic acids and cysteineS-conjugates of trichloroethylene. Archives of Toxicology 1991; 65: 373–380
  • Commandeur J. N. M., Oostendorp R. A. J., Schoofs P. R., Xu B., Vermeulen N. P. E. Nephrotoxicity and hepatotoxicity of 1,1-dichloro-2,2-difluoroethylene in the rat. Biochemical Pharmacology 1987; 36: 4229–4237
  • Crowe C. A., Yong A. C., Calder I. C., Ham K. N., Tange J. D. The nephrotoxicity of paminophenol. I. The effect on microsomal cytochromes, glutathione and covalent binding in kidney and liver. Chemico-Biological Interactions 1979; 27: 235–243
  • Dekant W., Berthold K., Vamvakas S., Henschler D. Thioacylating agents as ultimate intermediates in the β-lyase catalyzed metabolism ofS-(pentachlorobutadienyl)-L-cysteine. Chemico-Biological Interactions 1988d; 67: 139–148
  • Dekant W., Berthold K., Vamvakas S., Henschler D., Anders M. W. Thioacylating intermediates as metabolites ofS-(1,2-dichlorovinyl)-L-cysteine andS(1,2,2-trichlorovinyl)-L-cysteine formed by cysteine conjugate β-lyase. Chemical Research in Toxicology 1988c; 1: 175–178
  • Dekant W., Koob M., Henschler D. Metabolism of trichloroethene—in vivo and in vitro evidence for activation by glutathione conjugation. Chemico-Biological Interactions 1990c; 73: 89–101
  • Dekant W., Lash L. H., Anders M. W. Bioactivation mechanism of the cytotoxic and nephrotoxicS-conjugateS-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine. Proceedings of the National Academy of Sciences,USA 1987a; 84: 7443–7447
  • Dekant W., Martens G., Vamvakas S., Metzler M., Henschler D. Bioactivation of tetrachloroethylene—role of glutathioneS-transferase-catalyzed conjugation versus cytochrome P-450-dependent phospholipid alkylation. Drug Metabolism and Disposition 1987b; 15: 702–709
  • Dekant W., Metzler M., Henschler D. Novel metabolites of trichloroethylene through dechlorination reactions in rats, mice and humans. Biochemical Pharmacology 1984; 33: 2021–2027
  • Dekant W., Metzler M., Henschler D. Identification ofS-1,2-dichlorovinyl-N-acetylcysteine as a urinary metabolite of trichloroethylene: a possible explanation for its nephrocarcinogenicity in male rats. Biochemical Pharmacology 1986a; 35: 2455–2458
  • Dekant W., Metzler M., Henschler D. Identification ofS-1,2,2-trichlorovinyl-N-acetylcysteine as a urinary metabolite of tetrachloroethylene: bioactivation through glutathione conjugation as a possible explanation of its nephrocarcinogenicity. Journal of Biochemical Toxicology 1986b; 1: 57–72
  • Dekant W., Schrenk D., Vamvakas S., Henschler D. Metabolism of hexachloro-1, 3-butadiene in mice:in vivo and in vitro evidence for activation by glutathione conjugation. Xenobiotica 1988a; 18: 803–816
  • Dekant W., Urban G., Görsman C., Anders M. W. Thioketene formation from α-haloalkenyl 2-nitrophenyl disulfides: models for biological reactive intermediates of cytotoxicS-conjugates. Journal of the American Chemical Society 1991; 113: 5120–5122
  • Dekant W., Vamvakas S., Anders M. W. Bioactivation of nephrotoxic haloalkenes by glutathione conjugation: formation of toxic and mutagenic intermediates by cysteine conjugate β-lyase. Drug Metabolism Reviews 1989; 20: 43–83
  • Dekant W., Vamvakas S., Anders M. W. Biosynthesis, bioactivation, and mutagenicity ofS-conjugates. Toxicology Letters 1990a; 53: 53–58
  • Dekant W., Vamvakas S., Berthold K., Schmidt S., Wild D., Henschler D. Bacterial β-lyase-mediated cleavage and mutagenicity of cysteine conjugates derived from the nephrocarcinogenic alkenes trichloroethylene, tetrachloroethylene and hexachlorobutadiene. Chemico-Biological Interactions 1986c; 60: 31–45
  • Dekant W., Vamvakas S., Henschler D., Anders M. W. Enzymatic conjugation of hexachloro-1,3-butadiene with glutathione: formation of 1-(glutathion-S-yl)-1,2,3,4,4-pentachlorobuta-1,3-diene and 1,4-bis(glutathion-S-yl)-1,2,3,4-tetrachlorobuta-1,3-diene. Drug Metabolism and Disposition 1988b; 16: 701–706
  • Dekant W., Vamvakas S., Koob M., Köchling A., Kanhai W., Müller D., Henschler D. A mechanism of haloalkene-induced renal carcinogenesis. Environmental Health Perspectives 1990b; 88: 107–110
  • Dekant W., Vamvakas S. Mechanisms of xenobiotic-induced renal carcinogenicity. Advances in Pharmacology 1992; 23: 297–337
  • Dohn D. R., Anders M. W. The enzymatic reaction of chlorotrifluoroethylene with glutathione. Biochemical and Biophysical Research Communications 1982; 109: 1339–1345
  • Dohn D. R., Casida J. E. Thiiranium ion intermediates in the formation and reactions ofS-(2-haloethyl)-L-cysteines. Bioorganic Chemistry 1987; 15: 115–124
  • Eckert K.-G., Eyer P., Sonnenbichler J., Zetl I. Activation and detoxication of aminophenols. II. Synthesis and structural elucidation of various thiol addition products of 1,4-benzoquinoneimine andN-acetyl-1,4-benzoquinoneimine. Xenobiotica 1990; 20: 333–350
  • Elliot W. C., Lynn R. K., Houghton D. C., Kennish J. M., Bennett W. M. Nephrotoxicity of the flame retardant tris(2,3-dibromopropyl)phosphate, and its metabolites. Toxicology and Applied Pharmacology 1982; 63: 179–182
  • Foureman G. L., Reed D. J. Formation ofS-(2-(N7-guanyl)ethyl) adducts by the postulatedS-(2-chloroethyl)cysteinyl andS-(2-chloroethyl)glutathionyl conjugates of 1,2-dichloroethane. Biochemistry 1987; 26: 2028–2033
  • Fowler L., Moore R. B., Foster J. R., Lock E. A. Nephrotoxicity of 4-aminophenol glutathione conjugate. Human and Experimental Toxicology 1991; 10: 451–459
  • Gartland K. P. R., Bonner F. W., Nicholson J. K. Investigations into the biochemical effects of region-specific nephrotoxins. Molecular Pharmacology 1989a; 35: 242–250
  • Gartland K. P. R., Bonner F. W., Timbrell J. A., Nicholson J. K. Biochemical characterisation ofpara-aminophenol-induced nephrotoxic lesions in the F334 rat. Archives of Toxicology 1989b; 63: 97–106
  • Gartland K. P. R., Eason C. T., Bonner F. W., Nicholson J. K. Effects of biliary cannulation and buthionine sulphoximine pretreatment on the nephrotoxicity of para-aminophenol in the Fisher 334 rat. Archives of Toxicology 1990; 64: 14–25
  • Green T. The metabolic activation of dichloromethane and chlorofluoromethane in a bacterial mutation assay using Salmonella typhimurium. Mutation Research 1983; 118: 277–288
  • Green T., Odum J. Structure/activity studies of the nephrotoxic and mutagenic action of cysteine conjugates of chloro- and fluoroalkenes. Chemico-Biological Interactions 1985; 54: 15–31
  • Green T., Provan W. M., Collinge D. C., Guest A. E. Macromolecular interactions of inhaled methylene chloride in rats and mice. Toxicology and Applied Pharmacology 1988a; 93: 1–10
  • Green T., Provan W. M., Dugard P. H., Cook S. K. Methylene chloride (dichloromethane): human risk assessment using experimental animal data. ECETOC Technical Report 1988b; 32: 1–62
  • Guengerich F. P., Crawford W. M. J., Domoradzki J. Y., Macdonald T. L., Watanabe P. G. In vitro activation of 1,2-dichloroethane by microsomal and cytosolic enzymes. Toxicology and Applied Pharmacology 1980; 55: 303–317
  • Heck H. D., Casanova-Schmitz M. Biochemical toxicology of formaldehyde. Reviews in Biochemical Toxicology 1983; 5: 155–189
  • Hill B. A., Monks T. J., Lau S. S. The effects of 2,3,5-(triglutathion-S-yl)hydroquinone on renal mitochondrial respiratory functionin vivo and in vitro possible role in cytotoxicity. Toxicology and Applied Pharmacology 1992; 117: 165–171
  • Holme J. A., Soderlund E. J., Brunborg G., Lag M., Nelsdon S. D., Dybing E. DNA damage and cell death induced by 1,2-dibromo-3-chloropropane (DBCP) and structural analogs in monolayer culture of rat hepatocytes: 3-aminobenzamide inhibits the toxicity of DBCP. Cell Biology and Toxicology 1991; 7: 413–432
  • Humphreys W. G., Kim D. H., Cmarik J. L., Shimada T., Guengerich F. P. Comparison of the DNA-alkylating properties and mutagenic responses of a series ofS-(2-haloethyl)-substituted cysteine and glutathione derivatives. Biochemistry 1990; 29: 10342–10349
  • Humphreys W. G., Kim D. H., Guengerich F. P. Isolation and characterization of N7-guanyl adducts derived from 1,2-dibromo-3-chloropropane. Chemical Research in Toxicology 1991; 4: 445–453
  • IARC. Models, mechanisms and etiology of tumour promotion. Proceedings of a symposium organized by the Hungarian Cancer Society and the IARC. Budapest 16–18 May 1983. IARC, Lyon 1984; 1–532
  • Inskeep P. B., Guengerich F. P. Glutathione-mediated binding of dibromoalkanes to DNA: specificity of rat glutathione-S-transferases and dibromoalkane structure. Carcinogenesis 1984; 5: 805–808
  • Ishmael J., Pratt I., Lock E. A. Necrosis of the pars recta (S3 segment) of the rat kidney produced by hexachloro-1: 3-butadiene. Journal of Pathology 1982; 138: 99–113
  • Jean P. A., Reed D. J. In vitro dipeptide, nucleoside, and glutathione alkylation byS-(2-chloroethyl)glutathione andS-(2-chloroethyl)-L-cysteine. Chemical Research in Toxicology 1989; 2: 455–460
  • Jones A. R., Fakhouri G., Gadiel P. The metabolism of the soil fumigant 1,2-dibromo-3-chloropropane. Experienta 1979; 35: 1432–1434
  • Josephy P. D., Eling T. E., Mason R. P. Oxidation ofp-aminophenol catalyzed by horseradish peroxidase and prostaglandin synthase. Molecular Pharmacology 1983; 23: 461–466
  • Kanhai W., Dekant W., Henschler D. Metabolism of the nephrotoxin dichloroacetylene by glutathione conjugation. Chemical Research in Toxicology 1989; 2: 51–56
  • Kanhai W., Koob M., Dekant W., Henschler D. Metabolism of 14C-dichloroethyne in rats. Xenobiotica 1991; 21: 905–916
  • Kermani H. R. S., Sloane R. A., Moorman M. P., Yang R. S. H., Ray C., Reitz R. H. Enzyme kinetics of methylene chloride: MFO and GST activities in female B6C3F1 mice liver and long in relation to aging and chronic dosing. Toxicologist 1990; 10: 186
  • Kim D.-H., Guengerich F. P. Excretion of the mercapturic acidS-[2-(N7-guanyl)ethyl]-N-acetylcysteine in urine following administration of ethylene dibromide to rats. Cancer Research 1989; 499: 5843–5847
  • Kim D.-H., Guengerich F. P. Formation of the DNA adductS-[2-(N7-guanyl)ethyl]glutathione from ethylene dibromide: effects of modulation of glutathione and glutathioneS-transferase levels and lack of a role for sulfation. Carcinogenesis 1990; 11: 419–424
  • Kleiner H. E., Hill B. A., Monks T. J., Lau S. S. In vivo and in vitro formation of severalS-conjugates of hydroquinone. Toxicologist 1992; 12: 1350
  • Klos C., Koob M., Kramer C., Dekant W. p-Aminophenol nephrotoxicity: biosynthesis of toxic glutathione conjugates. Toxicology and Applied Pharmacology 1992; 115: 98–106
  • Kociba R. J., Keyes D. G., Jersey G. C., Ballard J. J., Dittenber D. A., Quast J. F., Wade L. E., Humiston C. G., Schwetz B. A. Results of a two year chronic toxicity study with hexachlorobutadiene in rats. American Industrial Hygiene Association Journal 1977; 38: 589–602
  • Koob M., Dekant W. Metabolism of hexafluoropropene—evidence for bioactivation by glutathione conjugate formation in the kidney. Drug Metabolism and Disposition 1990; 18: 911–916
  • Koob M., Dekant W. Bioactivation of xenobiotics by formation of toxic glutathione conjugates. Chemico-Biological Interactions 1991; 77: 107–136
  • Lag M., Omichinski J. G., Soderlund E. J., Brunborg G., Holme J. A., Dahl J. E., Nelson S. D., Dybing E. Role of P-450 activity and glutathione levels in 1,2-dibromo-3-chloropropane tissue distribution, renal necrosis andin vivo DNA damage. Toxicology 1989a; 56: 273–288
  • Lag M., Soderlund E. J., Brunborg G., Dahl J. E., Holme J. A., Omichinski J. G., Nelson S. D., Dybing E. Species differences in testicular necrosis and DNA damage, distribution and metabolism of 1,2-dibromo-3-chloropropane (DBCP). Toxicology 1989b; 58: 133–144
  • Lau S. S., Hill B. A., Highet R. J., Monks T. J. Sequential oxidation and gluathione addition to 1,4-benzoquinone: correlation of toxicity with increased glutathione substitution. Molecular Pharmacology 1988b; 34: 829–836
  • Lau S. S., Jones T. W., Highet R. J., Hill B., Monks T. J. Differences in the localization and extent of the renal proximal tubular necrosis caused by mercapturic acid and glutathione conjugates of 1,4-naphthoquinone and menadione. Toxicology and Applied Pharmacology 1990; 104: 334–350
  • Lau S. S., Monks T. J. Thein vivo disposition of 2-bromo-[14C]hydroquinone and the effect of γ-glutamyl transpeptidase inhibition. Toxicology and Applied Pharmacology 1990; 103: 121–132
  • Lau S. S., Monks T. J., Gillette J. R. Identification of 2-bromohydroquinone as a metabolite of bromobenzene ando-bromophenol: implications for bromobenzene-induced nephrotoxicity. Journal of Pharmacology and Experimental Therapeutics 1984; 230: 360–366
  • Lau S. S., McMenamin M. G., Monks T. J. Differential uptake of isomeric 2-bromohydroquinone-glutathione conjugates into kidney slices. Biochemical and Biophysical Research Communications 1988a; 152: 223–230
  • Lock E. A. Studies on the mechanism of nephrotoxicity and nephrocarcinogenicity of halogenated alkenes. CRC Critical Reviews in Toxicology 1988; 19: 23–42
  • Lock E. A. Mechanism of nephrotoxic action due to organohalogenated compounds. Toxicology Letters 1989; 46: 93–106
  • Lynn R. K., Garvie-Gould C., Wong K., Kennish J. M. Metabolism, distribution, and excretion of the flame retardant tris(2,3-dibromopropyl)phosphate(Tris-BP) in the rat: identification of mutagenic and nephrotoxic metabolites. Toxicology and Applied Pharmacology 1982; 63: 105–119
  • Mahmood N. A., Overstreet D., Burka L. T. Comparative disposition and metabolism of 1,2,3-trichloropropane in rats and mice. Drug Metabolism and Disposition 1991; 19: 411–418
  • Marchand D. H., Reed D. J. Identification of the reactive glutathione conjugateS-(2-chloroethyl)glutathione in the bile of 1-bromo-2-chlorethane-treated rats by high-pressure liquid chromatography and precolumn derivatization witho-phthalaldehyde. Chemical Research in Toxicology 1989; 2: 449–454
  • Meadows S. D., Gandolfi A. J., Nagle R. B., Shively J. W. Enhancement of DMN-induced kidney rumors by 1,2-dichlorovinylcysteine in Swiss-Webster mice. Drug Chemical Toxicology 1988; 11: 307–318
  • Meister A. Glutathione metabolism and its selective modification. Journal of Biological Chemistry 1988; 263: 17205–17208
  • Meister A. On the antioxidant effects of ascorbic acid and glutathione. Biochemical Pharmacology 1992; 44: 1905–1915
  • Mertens J. J., Temmink J. H., Bladeren P. J., Jones T. W., Lo H. H., Lau S. S., Monks T. J. Inhibition of γ-glutamyl transpeptidase potentiates the nephrotoxicity of glutathione-conjugated chlorohydroquinones. Toxicology and Applied Pharmacology 1991; 110: 45–60
  • Meyer D. J., Coles B., Pemble S. E., Gilmore K. S., Fraser G. M., Ketterer B. Theta, a new class of glutathione transferases purified from rat and man. Biochemical Journal 1991; 274: 409–114
  • Monks T. J., Anders M. W., Dekant W., Stevens J. L., Lau S. S., Bladeren P. J. Glutathione conjugate mediated toxicities. Toxicology and Applied Pharmacology 1990; 106: 1–19
  • Monks T. J., Highet R. J., Lau S. S. 2-Bromo-(diglutathion-S-yl)hydroquinone nephrotoxicity: physiological, biochemical, and electrochemical determinants. Molecular Pharmacology 1988; 34: 492–500
  • Monks T. J., Lau S. S. Commentary: renal transport processes and glutathione conjugate-mediated nephrotoxicity. Drug Metabolism and Disposition 1987; 15: 437–441
  • Monks T. J., Lau S. S. Sulphur conjugate-mediated toxicity. Reviews of Biochemical Toxicology 1989; 10: 41–90
  • Monks T. J., Lau S. S. Glutathione, γ-glutamyl transpeptidase, and the mercapturic acid pathway as modulators of 2-bromohydroquinone oxidation. Toxicology and Applied Pharmacology 1990; 103: 557–563
  • Monks T. J., Lau S. S., Highet R. J., Gillette J. R. Glutathione conjugates of 2-bromohydroquinone are nephrotoxic. Drug Metabolism and Disposition 1985; 13: 553–559
  • Nash J. A., King L. J., Lock E. A., Green T. The metabolism and disposition of hexachloro-1: 3-butadiene in the rat and its relevance to nephrotoxicity. Toxicology and Applied Pharmacology 1984; 73: 124–137
  • Nci Carcinogenesis bioassay of tetrachloroethylene. National Toxicology Program Technical Report 1986a; 232
  • Nci Carcinogenesis bioassay of trichloroethylene. National Toxicology Program Technical Report 1986b; 311
  • Newton J. F., Kuo C.-H., Gemborys M. W., Mudge G. H., Hook J. B. Nephrotoxicity ofp-aminophenol, a metabolite of acetaminophen, in the Fischer 344 rat. Toxicology and Applied Pharmacology 1982; 65: 336–344
  • Odum J., Green T. The metabolism and nephrotoxicity of tetrafluoroethylene in the rat. Toxicology and Applied Pharmacology 1984; 76: 306–318
  • Oesch F., Wolf C. R. Properties of the microsomal and cytosolic glutathione transferases involved in hexachloro-1: 3-butadiene conjugation. Biochemical Pharmacology 1989; 38: 353–359
  • Osterberg R. E., Bierbower G. W., Hehir R. M. Renal and testicular damage following dermal application of the flame retardant tris(2,3-dibromopropyl)phosphate. Journal of Toxicology and Environmental Health 1977; 3: 979–987
  • Ozawa N., Guengerich F. P. Evidence for formation of anS-[2-(N7-guanyl)ethyl]glutathione adduct in glutathione mediated binding of the carcinogen 1,2-dibromoethane to DNA. Proceedings of the National Academy of Sciences, USA 1983; 80: 5266–5270
  • Pearson P. G., Omichinski J. G., Myers T. G., Soderlund E. J., Dybing E., Nelson S. D. Metabolic activation of 1,2-dibromo-3-chloropropane to mutagenic metabolites: detection and mechanism of formation of (Z)- and (E)-2-chloro-3-(bromomethyl)oxirane. Chemical Research in Toxicology 1990; 3: 458–466
  • Peterson L. A., Harris T. M., Guengerich F. P. Evidence for an episulfonium ion intermediate in the formation ofS-[2-(N7-guanyl)ethyl]glutathione in DNA. Journal of the American Chemical Society 1988; 110: 3284–3291
  • Potter C. L., Gandolfi A. J., Nagle R., Clayton J. W. Effects of inhaled chlorotrifluoroethylene and hexafluoropropene on the rat kidney. Toxicology and Applied Pharmacology 1981; 59: 431–440
  • Redegeld F. A. M., Hofman G. A., Loo P. G. F., Koster A. S., Noordhoek J. Nephrotoxicity of glutathione conjugate of menadione (2-methyl-1,4-naphthoquinone) in the isolated perfused rat kidney. Role of metabolism by γ-glutamyltranspeptidase and probenecid-sensitive transport. Journal of Pharmacology and Experimental Therapeutics 1991; 256: 665–669
  • Reichert D., Ewald D., Henschler D. Generation and inhalation toxicity of dichloroacetylene. Food Cosmetical Toxicology 1975; 13: 511–515
  • Reichert D., Schuetz S. Mercapturic acid formation is an activation and intermediary step in the metabolism of hexachlorobutadiene. Biochemical Pharmacology 1986; 35: 1271–1275
  • Reitz R. H., Mendrala A. L., Guengerich F. P. In vitro metabolism of methylene chloride in human and animal tissues: use in physiologically based pharmacokinetic models. Toxicology and Applied Pharmacology 1989; 97: 230–246
  • Söderlund E. J., Gordon W. P., Nelson S. D., Omichinski J. G., Dybing E. Metabolismin vitro of tris(2,3-dibromopropyl)-phosphate: oxidative debromination and bis(2,3-dibromopropyl)phosphate formation as correlates of mutagenicity and covalent protein binding. Biochemical Pharmacology 1984; 33: 4017–4023
  • Spencer H. C., Rowe V. K., Adams E. M., McCollister D. D., Irish D. D. Vapor toxicity of ethylene dichloride determined by experiments on laboratory animals. Archives of Industrial Hygiene in Occupational Medicine 1951; 4: 482–493
  • Torkelson T. R., Sadek S. E., Rowe V. K., Kodama I. K., Anderson H. H., Loquvam G. S., Hine C. H. Toxicological investigation of 1,2-dibromo-3-chloropropane. Toxicology and Aplied Pharmacology 1961; 3: 545–553
  • Vamvakas S., Berthold K., Dekant W., Henschler D. Bacterial cysteine conjugate β-lyase and the metabolism of cysteineS-conjugates: Structural requirements for the cleavage ofS-conjugates and the formation of reactive intermediates. Chemico-Biological Interactions 1988a; 65: 59–71
  • Vamvakas S., Bittner D., Dekant W. M. W., Anders M. W. Events that precede and that followS-(1,2-dichlorovinyl)-L-cysteine-induced release of mitochondrial Ca2+ and their association with cytotoxicity renal cells. Biochemical Pharmacology 1992; 44: 1131–1138
  • Vamvakas S., Dekant W., Henschler D. Assessment of unscheduled DNA synthesis in a cultured line of renal epithelial cells exposed to cysteineS-conjugates of haloalkenes and haloalkanes. Mutation Research 1989a; 222: 329–335
  • Vamvakas S., Dekant W., Henscher D. Genotoxicity of haloalkene and haloalkane glutathioneS-conjugates in porcine kidney cells. Toxicology in vitro 1989d; 3: 151–156
  • Vamvakas S., Elfarra A. A., Dekant W., Henschler D., Anders M. W. Mutagenicity of amino acid and glutathioneS-conjugates in the Ames test. Mutation Research 1988b; 206: 83–90
  • Vamvakas S., Herkenhoff M., Dekant W., Henschler D. Mutagenicity of tetrachloroethylene in the Ames-test—metabolic activation by conjugation with glutathione. Journal of Biochemical Toxicology 1989c; 4: 21–27
  • Vamvakas S., Köchling A., Berthold K., Dekant W. Cytotoxicity of cysteineS-conjugates: structure-activity relationships. Chemico-Biological Interactions 1989e; 71: 79–90
  • Vamvakas S., Köster U. The nephrotoxin dichlorovinylcysteine induces expression of the protoooncogenes c-fos and c-myc in LLC-PK1 cells—a comparative investigation with growth factors and 12-O-tetradecanoylphorbolacetate. Cell Biology and Toxicology 1993; 9: 1
  • Vamvakas S., Kremling E., Dekant W. Metabolic activation of the nephrotoxic haloalkene 1,1,2-trichloro-3,3,3-trifluoro-1-propene by glutathione conjugation. Biochemical Pharmacology 1989b; 38: 2297–2304
  • Vamvakas S., Sharma V. K., Shen S.-S., Anders M. W. Perturbations of intracellular calcium distribution in kidney cells by nephrotoxic haloalkenyl cysteineS-conjugates. Molecular Pharmacologyxs 1990; 38: 455–461
  • Van Bladeren P. J., Breimer D. D., Rotteveel-Smijs G. M. T., Jong R. A. W., Buijs W., Gen A., Mohn G. R. The role of glutathione conjugation in the mutagenicity of 1,2-dibromoethane. Biochemical Pharmacology 1980; 29: 2975–2982
  • Van Bladeren P. J., Gen A., Breimer D. D., Mohn G. R. Stereoselective activation of vicinal dihalogen compounds to mutagens by glutathione conjugation. Biochemical Pharmacology 1979; 28: 2521–2524
  • Wallin A., Gerdes R. G., Morgenstern R., Jones T. W., Ormstad K. Features of microsomal and cytosolic glutathione conjugation of hexachlorobutadiene in rat liver. Chemico-Biological Interactions 1988; 68: 1–11
  • Weber G., Sipes I. G. Covalent interactions of 1,2,3-trichloropropane with hepatic macromolecules: studies in the male F-344 rat. Toxicology and Applied Pharmacology 1990; 104: 395–402
  • Weber G. L., Sipes I. G. In vitro metabolism and bioactivation of 1,2,3-trichloropropane. Toxicology and Applied Pharmacology 1992; 113: 152–158
  • Weisburger E. K. Carcinogenicity studies on halogenated hydrocarbons. Environmental Health Perspectives 1977; 21: 7–16
  • Winter S. M., Weber G. L., Gooley P. R., Mackenzie N. E., Sipes I. G. Identification and comparison of the urinary metabolites of [1,2,3–13C3]acrylic acid and[1,2,3–13C3]propionic acid in the rat by homonuclear 13C nuclear magnetic resonance spectrosopy. Drug Metabolism and Disposition 1992; 20: 665–672
  • Wolf C. R., Berry P. N., Nash J. A., Green T., Lock E. A. Role of microsomal and cytosolic glutathioneS-transferases in the conjugation of hexachloro-1: 3-butadiene and its possible relevance to toxicity. Journal of Pharmacology and Experimental Therapeutics 1984; 228: 202–208
  • Zheng J., Hanzlik R. P. Dihydroxylated mercapturic acid metabolites of bromobenzene. Chemical Research in Toxicology 1992; 5: 561–567

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.