Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 24, 1994 - Issue 4
24
Views
23
CrossRef citations to date
0
Altmetric
Research Article

Dose-dependent pharmacokinetic interaction between antipyrine and paracetamol in vivo and in vitro when administered as a cocktail in pig

, , , &
Pages 347-355 | Received 12 Aug 1993, Published online: 22 Sep 2008

References

  • Ameer B., Greenblatt D. J., Divoll M., Abernethy D. D., Skargel L. High-performance liquid chromatographic determination of acetaminophen in plasma: single dose pharmacokinetic studies. Journal of Chromatography and Biomedical Applications 1981; 226: 224–230
  • Awni W. M., St Peter J. V., Kovarik J. M., Matzke G. R. Disposition of antipyrine and acetaminophen given alone and in combination to human subjects. Pharmaceutical Research 1990; 7: 204–207
  • Blyden G. T., Greenblatt D. J., LeDuc B. W., Scavone J. M. Effect of antipyrine coadministration on the kinetics of acetaminophen and lidocaine. European Journal of Clinical Pharmacology 1988; 35: 413–417
  • Bock K. W., Bock-Hennig B. S. Differential induction of human liver UDP-glucuronosyltransferase activities by phenobarbital-type inducers. Biochemical Pharmacology 1987; 36: 4137–4143
  • Bötcher J., Bässman H., Schüppel R. Quantitation and urinary pattern of 4,4′-dihydroxy-antipyrine, 4-hydroxy-antipyrine and 3-hydroxymethyl-antipyrine as main metabolites of antipyrine in man and rat. Journal of Pharmacy and Pharmacology 1982; 34: 168–175
  • Broek, Van Den J. M., Tuenissen W. E., Breimer D. D. Induction of hexobarbital and antipyrine metabolism by rifampicin treatment in the pig. Drug Metabolism and Disposition 1981; 9: 541–544
  • Danhof M., Breimer D. D. Studies on the different metabolic pathways of antipyrine in man. I. Oral administration of 250, 500 and 1000 mg to healthy volunteers. British Journal of Clinical Pharmacology 1979; 8: 529–537
  • Danhof M., Krom D. P., Breimer D. D. Studies on the different metabolic pathways of antipyrine in rats: influence of phenobarbital and 3-methylcholanthrene treatment. Xenobiotica 1979; 9: 695–702
  • Danhof M., Verbeek R. M. A., Van Boxtel C. J., Boeijinga K. J., Breimer D. D. Differential effects of enzyme induction on antipyrine metabolite formation. British Journal Clinical Pharmacology 1982; 13: 379–386
  • Knights K. M., Gourlay G. K., Hall P., Cousins M. J. The predictive value of changes in antipyrine pharmacokinetics in halothane and paracetamol induced hepatic necrosis in rats. Research Communications Chemical Pathology and Pharmacology 1983; 40: 199–215
  • Kroemer H. K., Klotz U. Glucuronidation of Drugs. Clinical Pharmacokinetics 1992; 23: 292–310
  • Loft S. Metronidazole and antipyrine as probes for the study of foreign compound metabolism. Pharmacology and Toxicology 1990; 66(Suppl. VI)1–31
  • Mansor S. M., Edwards G., Roberts P. J., Ward S. A. The effect of malaria infection on paracetamol disposition in the rat. Biochemical Pharmacology 1991b; 41: 1701–1711
  • Mansor S. M., Ward S. A., Edwards G. The effect of malaria infection of antipyrine metabolite formation in the rat. Biochemical Pharmacology 1991a; 41: 1264–1266
  • Miners J. O., Adams J. F., Birkett D. J. A simple hplc assay for urinary paracetamol metabolites and its use to characterize the C3H mouse as a model for paracetamol metabolism studies. Clinical Experimental Physiology Pharmacology 1984; 11: 209–217
  • Miners J. O., Lillywhite K. J., Yoovathaworn K., Pongmarutai M., Birkett D. J. Characterization of paracetamol UDP-glucuronosyltransferase activity in human liver microsomes. Biochemical Pharmacology 1990; 40: 595–600
  • Mitchell J. R., Jollow D. J., Potter W. Z., Davis D. C., Gillette J. R., Brodie B. B. Acetaminophen-induced hepatic necrosis I. Role of drug metabolism. Journal of Pharmacology and Experimental Therapeutics 1973; 187: 185–194
  • Pijpers A., Noordhuizen-Stassen E. N., Goedegebuure S. A., Van Dobbenburgh O. A., Roosendaal M., Cornelissen A. H. M., Verheijsen J. H. M. Intravenous catheterisation of conventional pigs without application of antimicrobial agents. Veterinary Quarterly 1989; 11: 216–221
  • Rutten A. A. J. J. L., Falke H. E., Catsburgh J. F., Topp R., Blaauboer B. J., Van Holsteijn I., Doorn L., Van Leeuwen F. X. R. Interalaboratory comparison of total cytochrome P-450 and protein determinations in rat liver microsomes. Archives in Toxicology 1987; 61: 27–33
  • Sakai H., Kobayashi S., Hamada K., Iida S., Tanaka H., Akita E., Uchida E., Yasuhara H. The effects of diltiazem on hepatic drug metabolizing enzymes in man using antipyrine, trimethadione and debrisoquine as model substrates. British Journal of Clinical Pharmacology 1991; 31: 353–355
  • Schellens J. H. M., Van Der Wart J. H. F., Brugman M., Breimer D. D. Influence of enzyme induction and inhibition on the oxidation of nifedipine, sparteine, mephenytoin and antipyrine in humans assessed by a cocktail design study. Journal of Pharmacology and Experimental Therapeutics 1989; 249: 638–645
  • Tephly T. R., Burchell B. UDP-glucuronosyltransferases: a family of detoxifying enzymes. Trends in Pharmacological Sciences 1990; 11: 276–279
  • Teunissen M. W. E., Joeres R. P., Vermeulen N. P. E., Breimer D. D. Influence of 9-hydroxyellipticine and 3-methylcholanthrene treatment on antipyrine metabolite formation in rats in vivo. Xenobiotica 1983b; 13: 223–231
  • Teunissen M. W. E., Van Den Meerburg-Torren J. E., Vermeulen N. P. E., Breimer D. D. Automated HPLC-determination of antipyrine and its main metabolites in plasma, saliva and urine, including 4,4′-dihydroxy-antipyrine. Journal of Chromatography and Biomedical Applications 1983a; 278: 367–378
  • Vesell E. S. The antipyrine test in clinical pharmacology: conceptions and misconceptions. Clinical Pharmacology and Therapeutics 1979; 26: 275–286
  • Vial T., Sauveur C., Descotes J. Influence of acetaminophen and antipyrine kinetics in rats. Fundamentals in Clinical Pharmacology 1990; 4: 79–83
  • Witkamp R. F., Lohuis J. A. C. M., Nijmeijer S. M., Kolker H. J., Noordhoek J., Van Miert A. S. J. P. A. M. Species- and sex-related differences in the plasma clearance and metabolite formation of antipyrine. A comparative study in four animal species: cattle, goat, rat and rabbit. Xenobiotica 1991; 21: 1483–1492

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.