Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 25, 1995 - Issue 7
154
Views
41
CrossRef citations to date
0
Altmetric
Original Article

Radical cation intermediates in N-dealkylation reactions

, , &
Pages 689-709 | Received 12 Nov 1994, Published online: 27 Aug 2009

References

  • Anne A., Hapiot P., Moiroux J., Neta P., Savéant J. M. Dynamics of proton transfer from cation radicals. Kinetic and thermodynamic acidities of cation radicals of NADH analogues. Journal of the American Chemical Society 1992; 114: 4694–4701
  • Ator M. A., Ortiz de Montellano P. R. Protein control of prosthetic heme reactivity: reaction of substrates with the heme edge of horseradish peroxidase. Journal of Biological Chemistry 1987; 262: 1542–1551
  • Augusto O., Beilan H. S., Ortiz de Montellano P. R. The catalytic mechanism of cytochrome P-450: spin-trapping evidence for one-electron substrate oxidation. Journal of Biological Chemistry 1982; 257: 11288–11295
  • Baba T., Yamada H., Oguri K., Yoshimura H. A new metabolite of methamphetamine: evidence for formation of N-[1-methyl-1-phenyl)ethyl]ethanimine N-oxide. Xenobiotica 1987; 17: 1029–1038
  • Bondon A., Macdonald T. L., Harris T. M., Guengerich F. P. Oxidation of cycloalkylamines by cytochrome P-450. Mechanism-based inactivation, adduct formation, ring expansion, and nitrone formation. Journal of Biological Chemistry 1989; 264: 1988–1997
  • Born J. L., Hadley W. M. Isotopic sensitivity in the microsomal oxidation of the dihydropyridine calcium entry blocker nifedipine. Chemical Research in Toxicology 1989; 2: 57–59
  • Bowry V. W., Ingold K. U. A radical clock investigation of microsomal cytochrome P-450 hydroxylation of hydrocarbons. Rate of oxygen rebound. Journal of the American Chemical Society 1991; 113: 5699–5707
  • Brodie B. B., Gillette J. R., Ladu B. N. Enzymatic metabolism of drugs and other foreign compounds. Annual Reviews in Biochemistry 1958; 27: 427–454
  • Burka L. T., Guengerich F. P., Willard R. J., Macdonald T. L. Mechanism of cytochrome P-450 catalysis. Mechanism of N-dealkylation and amine oxide deoxygenation. Journal of the American Chemical Society 1985; 107: 2549–2551
  • Bäärnhielm C., Hansson G. Oxidation of 1,4-dihydropyridines by prostaglandin synthase and the peroxidic function of cytochrome P-450. Demonstration of a free radical intermediate. Biochemical Pharmacology 1986; 35: 1419–1425
  • Bäärnhielm C., Skånberg I., Borg K. O. Cytochrome P-450-dependent oxidation of felodipine—a 1,4-dihydropyridine—to the corresponding pyridine. Xenobiotica 1984; 14: 719–726
  • Böcker R. H., Guengerich F. P. Oxidation of 4-aryl- and 4-alkyl-substituted 2,6-dimethyl-3,5-bis(alkoxycarbonyl)-1,4-dihydropyridines by human liver microsomes and immunochemical evidence for the involvement of a form of cytochrome P-450. Journal of Medicinal Chemistry 1986; 29: 1596–1603
  • Cashman J. R. Enantioselective N-oxygenation of verapamil by the hepatic flavin-containing monooxygenase. Molecular Pharmacology 1989; 36: 497–503
  • Cavalieri E. L., Rogan E. G., Roth R. W., Saugier R. K., Hakam A. The relationship between ionization potential and horseradish peroxidase/hydrogen peroxide-catalysed binding of aromatic hydrocarbons to DNA. Chemical Biological Interactions 1983; 47: 87–109
  • Dawson J. H., Kau L. S., Penner-Hahn J. E., Sono M., Eble K. S., Bruce G. S., Hager L. P., Hodgson K. O. Oxygenated cytochrome P-450-CAM and chloroperoxidase: direct evidence for sulfur donor ligation trans to dioxygen and structural characterization using EXAFS spectroscopy. Journal of the American Chemical Society 1986; 108: 8114–8116
  • De Matteis F., Gibbs A. H., Jackson A. H., Weerasinghe S. Conversion of liver haem into N-substituted porphyrins or green pigments: nature of the substituent at the pyrrole nitrogen atom. FEBS Letters 1980; 119: 109–112
  • Denu J. M., Fitzpatrick P. F. Intrinsic primary, secondary, and solvent kinetic isotope effects on the reductive half-reaction of D-amino acid oxidase: evidence against a concerted mechanism. Biochemistry 1994; 33: 4001–4007
  • Dinnocenzo J. P., Banach T. E. Deprotonation of tertiary amine cation radicals. A direct experimental approach. Journal of the American Chemical Society 1989; 111: 8646–8653
  • Dinnocenzo J. P., Karki S. B., Jones J. P. On isotope effects for the cytochrome P-450 oxidation of substituted N,N-dimethylanilines. Journal of the American Chemical Society 1993; 115: 7111–7116
  • Edmondson D. E., Bhattacharyya A. K., Walker M. C. Spectral and kinetic studies of imine product formation in the oxidation of p-(N,N-dimethylamino)benzylamine analogues by monoamine oxidase B. Biochemistry 1993; 32: 5196–5202
  • Everse J., Everse K. E., Grisham M. B. Peroxidases in Chemistry and Biology. CRC Press, Boca Raton 1991; Vols. I and II
  • Fitzpatrick P. F., Villafranca J. J. Mechanism-based inhibitors of dopamine β-hydroxylase. Archives in Biochemistry and Biophysics 1987; 257: 231–250
  • Fox B. G., Borneman J. G., Wackett L. P., Lipscomb J. D. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 1990; 29: 6419–6427
  • Fox B. G., Surerus K. K., Münck E., Lipscomb J. D. Evidence for a μ-oxo-bridged binuclear iron cluster in the hydroxylase component of methane monooxygenase. Journal of Biological Chemistry 1988; 263: 10553–10556
  • Galliani G., Nali M., Rindone B., Tollari S., Rocchetti M., Salmona M. The rate of N-demethylation of N,N-dimethylanilines and N-methylanilines by rat-liver microsomes is related to their first ionization potential, their lipophilicity and to a steric bulk factor. Xenobiotica 1986; 16: 511–517
  • Gillette J. R., Dingell J. V., Brodie B. B. Dealkylation of N-alkylamines by model systems. Nature, 181: 898–899
  • Griffin B. W., Marth C., Yasukochi Y., Masters B. S. S. Radical mechanism of aminopyrine oxidation by cumene hydroperoxide catalysed by purified liver microsomal cytochrome P-450. Archives in Biochemistry and Biophysics 1980; 205: 543–553
  • Groves J. T., McClusky G. A., White R. E., Coon M. J. Aliphatic hydroxylation by highly purified liver microsomal cytochrome P-450: Evidence for a carbon radical intermediate. Biochemical and Biophysical Research Communications 1978; 81: 154–160
  • Guengerich F. P. Oxidative cleavage of carboxylic esters by cytochrome P-450. Journal of Biological Chemistry 1987; 262: 8459–8462
  • Guengerich F. P. Enzymatic oxidation of xenobiotic chemicals. Critical Reviews in Biochemistry and Molecular Biology 1990a; 25: 97–153
  • Guengerich F. P. Low kinetic hydrogen isotope effects in the oxidation of 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridine-dicarboxylic acid dimethyl ester (nifedipine) by cytochrome P-450 enzymes are consistent with an electron-proton-electron transfer mechanism. Chemical Research in Toxicology 1990b; 3: 21–26
  • Guengerich F. P. Reactions and significance of cytochrome P-450 enzymes. Journal of Biological Chemistry 1991; 266: 10019–10022
  • Guengerich F. P., Bell L. C., Okazaki O. Interpretation of cytochrome P450 mechanisms from kinetic studies. Biochimie 1995, (in press)
  • Guengerich F. P., Böcker R. H. Cytochrome P-450-catalyzed dehydrogenation of 1,4-dihydropyridines. Journal of Biological Chemistry 1988; 263: 8168–8175
  • Guengerich F. P., Brian W. R., Iwasaki M., Sari M.-A., Bäärnhielm C., Berntsson P. Oxidation of dihydropyridine calcium channel blockers and analogues by human liver cytochrome P-450 IIIA4. Journal of Medicinal Chemistry 1991; 34: 1838–1844
  • Guengerich F. P., Martin M. V., Beaune P. H., Kremers P., Wolff T., Waxman D. J. Characterization of rat and human liver microsomal cytochrome P-450 forms involved in nifedipine oxidation, a prototype for genetic polymorphism in oxidative drug metabolism. Journal of Biological Chemistry 1986a; 261: 5051–5060
  • Guengerich F. P., Müller-Enoch D., Blair I. A. Oxidation of quinidine by human liver cytochrome P-450. Molecular Pharmacology 1986b; 30: 287–295
  • Guengerich F. P., Peterson L. A., Böcker R. H. Cytochrome P-450-catalysed hydroxylation and carboxylic acid ester cleavage of Hantzsch pyridine esters. Journal of Biological Chemistry 1988; 263: 8176–8183
  • Guengerich F. P., Willard R. J., Shea J. P., Richards L. E., Macdonald T. L. Mechanism-based inactivation of cytochrome P-450 by heteroatom-substituted cyclopropanes and formation of ring-opened products. Journal of the American Chemical Society 1984; 106: 6446–6447
  • Hall L. R., Hanzlik R. P. Kinetic deuterium isotope effects on the N-demethylation of tertiary amides by cytochrome P-450. Journal of Biological Chemistry 1990; 265: 12349–12355
  • Hall L. R., Iwamoto R. T., Hanzlik R. P. Electrochemical models for cytochrome P-450. N-demethylation of tertiary amides by anodic oxidation. Journal of Organic Chemistry 1989; 54: 2446–2451
  • Hammons G. J., Guengerich F. P., Weis C. C., Beland F. A., Kadlubar F. F. Metabolic oxidation of carcinogenic arylamines by rat, dog, and human hepatic microsomes and by purified flavin-containing and cytochrome P-450 monooxygenases. Cancer Research 1985; 45: 3578–3585
  • Hanzlik R. P., Kishore V., Tullman R. Cyclopropylamines as suicide substrates for cytochromes P-450. Journal of Medicinal Chemistry 1979; 22: 759–761
  • Hanzlik R. P., Tullman R. H. Suicidal inactivation of cytochrome P-450 by cyclopropylamines. Evidence for cation-radical intermediates. Journal of the American Chemical Society 1982; 104: 2048–2050
  • Harada N., Miwa G. T., Walsh J. S., Lu A. Y. H. Kinetic isotope effects on cytochrome P-450-catalysed oxidation reactions: evidence for the irreversible formation of an activated oxygen intermediate of cytochrome P-448. Journal of Biological Chemistry 1984; 259: 3005–3010
  • Harris R. Z., Newmyer S. L., Ortiz De Montellano P. R. Horseradish peroxidase-catalysed two-electron oxidation: oxidation of iodide, thioanisoles, and phenols at distinct sites. Journal of Biological Chemistry 1993; 268: 1637–1645
  • Hayashi Y., Yamazaki I. The oxidation-reduction potentials of compound I/compound II and compound II/ferric couples of horseradish peroxidases A2 and C. Journal of Biological Chemistry 1979; 254: 9191–9106
  • Hollenberg P. F., Miwa G. T., Walsh J. S., Dwyer L. A., Rickert D. E., Kedderis G. L. Mechanisms of N-demethylation reactions catalysed by cytochrome P-450 and peroxidases. Drug Metabolism and Disposition 1985; 13: 272–275
  • Hull L. A., Davis G. T., Rosenblatt D. H., Williams H. K. R., Weglein R. C. Oxidation of amines. III. Duality of mechanism in the reaction of amines with chlorine dioxide. Journal of the American Chemical Society 1967; 89: 1163–1170
  • Janes S. M., Mu D., Wemmer D., Smith A. J., Kaur S., Maltby D., Burlingame A. L., Klinman J. P. A new redox cofactor in eukaryotic enzymes: 6-hydroxydopa at the active site of bovine serum amine oxidase. Science 1990; 248: 981–987
  • Katopodis A. G., Smith H. A., Jr., May S. W. New oxyfunctionalization capabilities for 2-hydroxylases: asymmetric aliphatic sulfoxidation and branched ether demethylation. Journal of the American Chemical Society 1988; 110: 897–899
  • Katopodis A. G., Wimalesena K., Lee J., May S. W. Mechanistic studies on non-heme iron monooxygenase catalysis: epoxidation, aldehyde formation and demethylation by the ω-hydroxylation system of Pseudomonas oleovorans. Journal of the American Chemical Society 1984; 106: 7928–7935
  • Kedderis G. L., Hollenberg P. F. Characterization of the N-demethylation reactions catalysed by horseradish peroxidase. Journal of Biological Chemistry 1983; 258: 8129–8138
  • Kennedy C. H., Mason R. P. A reexamination of the cytochrome P-450-catalysed free radical production from dihydropyridine: evidence of trace transition metal catalysis. Journal of Biological Chemistry 1990; 265: 11425–11428
  • Kim J. M., Bogdan M. A., Mariano P. S. Mechanistic analysis of the 3-methyllumiflavin-promoted oxidative deamination of benzylamine—a potential model for monoamine oxidase catalysis. Journal of the American Chemical Society 1993; 115: 10591–10595
  • Lang B., Iba M. M. Metabolism of 3,3′-dichlorobenzidine by horseradish peroxidase. Xenobiotica 1988; 18: 893–904
  • Lee J. S., Jacobsen N. E., Ortiz De Montellano P. R. 4-Alkyl radical extrusion in the cytochrome P-450-catalysed oxidation of 4-alkyl-1,4-dihydropyridines. Biochemistry 1988; 27: 7703–7710
  • Lee S. K., Nesheim J. C., Lipscomb J. D. Transient intermediates of the methane monooxygenase catalytic cycle. Journal of Biological Chemistry 1993; 268: 21569–21577
  • Lewis F. D., Ho T. I. On the selectivity of tertiary amine oxides. Journal of the American Chemical Society 1980; 102: 1751–1752
  • Lindsay Smith J. R., Mead L. A. V. Amine oxidation. Part VII. The effect of structure on the reactivity of alkyl tertiary amines towards alkaline hexacyanoferrate (III). Journal of the Chemical Society Perkin Transactions 1973; 2: 206–210
  • Ling K. H. J., Hanzlik R. P. Deuterium isotope effects on toluene metabolism. Product release as a rate-limiting step in cytochrome P-450 catalysis. Biochemical and Biophysical Research Communications 1989; 160: 844–849
  • Macdonald T. L., Gutheim W. G., Martin R. B., Guengerich F. P. Oxidation of substituted N,N-dimethylanilines by cytochrome P-450: estimation of the effective oxidation-reduction potential of cytochrome P-450. Biochemistry 1989; 28: 2071–2077
  • Macdonald T. L., Zirvi K., Burka L. T., Peyman P., Guengerich F. P. Mechanism of cytochrome P-450 inhibition by cyclopropylamines. Journal of the American Chemical Society 1982; 104: 2050–2052
  • Mangold J. B., Klinman J. P. Mechanism-based inactivation of dopamine β-monooxygenase by β-chlorophenethylamine. Journal of Biological Chemistry 1984; 259: 7772–7779
  • Manring L. E., Peters K. S. Picosecond observation of kinetic vs. thermodynamic hydrogen atom transfer. Journal of the American Chemical Society 1983; 105: 5708–5709
  • Mansuy D., Bartoli J. F., Momenteau M. Alkane hydroxylation catalysed by metalloporphyrins: evidence for different active oxygen species with alkylhydroperoxides and iodosobenzene as oxidants. Tetrahedron Letters 1982; 23: 2781–2784
  • March J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 4th edn. Wiley, New York 1992; 60
  • Marnett L. J., Weller P., Battista J. R. Comparison of the peroxidase activity of hemeproteins and cytochrome P-450. Cytochrome P-450, P. R. Ortiz de Montellano. Plenum, New York 1986; 29–76
  • McMahon R. E., Culp H. W., Occolowitz J. C. Studies on the hepatic microsomal N-dealkylation reaction: molecular oxygen as the source of the oxygen atom. Journal of the American Chemical Society 1969; 91: 3389–3390
  • Mico B. A., Swagzdis J. E., Hu H. S.-W., Keefer L. K., Oldfield N. F., Garland W. A. Low-dose in vivo pharmacokinetic and deuterium isotope effect studies of N-nitrosodimethylamine in rats. Cancer Research 1985; 45: 6280–6285
  • Miller V. P., Fruetel J. A., Ortiz De Montellano P. R. Cytochrome P450cam-catalyzed oxidation of a hypersensitive radical probe. Archives in Biochemistry and Biophysics 1992; 298: 697–702
  • Miwa G. T., Harada N., Lu A. Y. H. Kinetic isotope effects on cytochrome P-450-catalysed oxidation reactions: full expression of the intrinsic isotope effect during the O-deethylation of 7-ethoxycoumarin by liver microsomes from 3-methylcholanthrene-induced hamsters. Archives of Biochemistry and Biophysics 1985; 239: 155–162
  • Miwa G. T., Lu A. Y. H. Kinetic isotope effects and ‘metabolic switching’ in cytochrome P450-catalysed reactions. BioEssays 1987; 7: 215–219
  • Miwa G. T., Walsh J. S., Kedderis G. L., Hollenberg P. F. The use of intramolecular isotope effects to distinguish between deprotonation and hydrogen atom abstraction mechanisms in cytochrome P-450- and peroxidase-catalysed N-demethylation reactions. Journal of Biological Chemistry 1983; 258: 14445–14449
  • Miwa G. T., Walsh J. S., Lu A. Y. H. Kinetic isotope effects on cytochrome P-450-catalysed oxidation reactions: the oxidative O-dealkylation of 7-ethoxycoumarin. Journal of Biological Chemistry 1984; 259: 3000–3004
  • Moncrieff J. Simultaneous determination of sparteine and its 2-dehydro and 5-dehydro metabolites in urine by high-performance liquid chromatography with electrochemical detection. Journal of Chromatography 1990; 529: 194–200
  • Murdoch J. A simple relationship between empirical theories for predicting barrier heights of electron-, proton-, atom-, and group-transfer reactions. Journal of the American Chemical Society 1983; 105: 2159–2164
  • Nelsen S. F., Ippoliti J. T. On the deprotonation of trialkylamine cation radicals by amines. Journal of the American Chemical Society 1986; 108: 4879–4881
  • Northrop D. B. Deuterium and tritium kinetic isotope effects on initial rates. Methods in Enzymology 1982; 87: 607–625
  • Oae S., Mikami A., Matsuura T., Ogawa-Asada K., Watanabe Y., Fujimori K., Iyanagi T. Comparison of sulfide oxygenation mechanism for liver microsomal FAD-containing monooxygenase with that for cytochrome P-450. Biochemical and Biophysical Research Communications 1985; 131: 567–573
  • Okazaki O., Guengerich F. P. Evidence for specific base catalysis in N-dealkylation reactions catalysed by cytochrome P450 and chloroperoxidase. Differences in deprotonation of aminium radicals as an explanation for high kinetic deuterium isotope effects observed with peroxidases. Journal of Biological Chemistry 1993; 268: 1546–1552
  • Oxygen activation and transfer. Cytochrome P-450, P. R. Ortiz De Montellano. Plenum, New York 1986; 217–271
  • Ortiz De Montellano P. R. Control of the catalytic activity of prosthetic heme by the structure of hemoproteins. Accounts of Chemical Research 1987; 20: 289–294
  • Ortiz De Montellano P. R. Catalytic sites of hemoprotein peroxidases. Annual Reviews in Pharmacology and Toxicology 1992; 32: 89–107
  • Ortiz De Montellano P. R., Correia M. A. Suicidal destruction of cytochrome P-450 during oxidative drug metabolism. Annual Reviews in Pharmacology and Toxicology 1983; 23: 481–503
  • Ortiz De Montellano P. R., Stearns R. A. Timing of the radical recombination step in cytochrome P-450 catalysis with ring-strained probes. Journal of the American Chemical Society 1987; 109: 3415–3420
  • Ortiz De Montellano P. R., Stearns R. A. Radical intermediates in the cytochrome P-450-catalyzed oxidation of aliphatic hydrocarbons. Drug Metabolism Reviews 1989; 20: 183–191
  • Ozaki S.-I., Ortiz De Montellano P. R. Molecular engineering of horseradish peroxidase. Highly enantioselective sulfoxidation of aryl alkyl sulfides by the Phe-41 - > Leu mutant. Journal of the American Chemical Society 1994; 116: 4487–4488
  • Padgette S. R., Wimalasena K., Herman H. H., Sirmanne S. R., May S. W. Olefin oxygenation and N-dealkylation by dopamine β-monooxygenase: catalysis and mechanism-based inhibition. Biochemistry 1985; 24: 5826–5839
  • Parker V. D., Tilset M. Facile proton transfer reactions of N,N-demthylaniline cation radicals. Journal of the American Chemical Society 1991; 113: 8778–8781
  • Powell M. F., Bruice T. C. Hydride vs. electron transfer in the oxidation of NADH model compounds. Oxidases and Related Redox Systems. A. R. Liss, New York 1988; 369–385
  • Prough R. A., Brown M. I., Dannan G. A., Guengerich F. P. Major isozymes of rat liver microsomal cytochrome P-450 involved in the N-oxidation of N-isopropyl-a-(2-methylazo)-p-toluamide, the azo derivative of procarbazine. Cancer Research 1984; 44: 543–548
  • Rosenblatt D. H., Davis G. T., Hull L. A., Forberg G. D. Oxidations of amines. V. Duality of mechanisms in the reactions of aliphatic amines with permanganate. Journal of Organic Chemistry 1968; 33: 1649–1650
  • Seto Y., Guengerich F. P. Partitioning between N-dealkylation and N-oxygenation in the oxidation of N,N-dialkylarylamines catalyzed by cytochrome P450 2B1. Journal of Biological Chemistry 1993; 268: 9986–9997
  • Shea J. P., Nelson S. D., Ford G. P. MNDM calculation of kinetic isotope effects in model cytochrome P-450 oxidations. Journal of the American Chemical Society 1983; 105: 5451–5454
  • Shono T., Toda T., Oshino N. Preparation of N-dealkylated drug metabolites by electrochemical simulation of biotransformation. Drug Metabolism and Disposition 1981; 9: 481–482
  • Shono T., Toda T., Oshino N. Electron transfer from nitrogen in microsomal oxidation of amine and amide. Simulation of miccrosomal oxidation by anodic oxidation. Journal of the American Chemical Society 1982; 104: 2639–2641
  • Shono T., Toda T., Oshino N. Electrooxidative simulation of steroselectivity in microsomal allylic hydroxylation. Tetrahedron Letters 1984; 25: 91–94
  • Silverman R. B. Mechanism-Based Enzyme Inactivation: Chemistry and Enzymology. CRC Press, Boca Raton 1988
  • Silverman R. B., Cesarone J. M., Lu X. Stereoselective ring opening of 1-phenylcyclopropylamine catalysed by monoamine oxidase-B. Journal in the American Chemical Society 1993; 115: 4955–4961
  • Silverman R. B., Hiebert C. K. Inactivation of monoamine oxidase A by the monoamine oxidase B inactivators 1-phenylcyclopropylamine, 1-benzylcyclopropylamine, and N-cyclopropyl-α-methylbenzylamine. Biochemistry 1988; 27: 8448–8453
  • Silverman R. B., Hoffman S. J. N-(1-methyl)cyclopropylbenzylamine: a novel inactivator of mitochondrial monoamine oxidase. Biochemical and Biophysical Research Communications 1981; 101: 1396–1401
  • Silverman R. B., I U X. Evidence against a nucleophilic mechanism for monoamine oxidase-catalyzed amine oxidation. Journal of the American Chemical Society 1994; 116: 4129–4130
  • Silverman R. B., Zelechonok Y. Evidence for a hydrogen atom transfer mechanism or a proton/fast electron transfer mechanism for monoamine oxidase. Journal of Organic Chemistry 1992; 57: 6373–6374
  • Sinha A., Bruice T. C. Rate-determining general-base catalysis in an obligate le oxidation of a dihydropyridine. Journal of the American Chemical Society 1984; 106: 7291–7292
  • Smyser B. P., Levi P. E., Hodgson E. Interactions of diethylphenylphosphine with purified, reconstituted mouse liver cytochrome P-450 monooxygenase systems. Biochemical Pharmacology 1986; 35: 1719–1723
  • Stearns R. A., Ortiz De Montellano P. R. Inactivation of cytochrome P-450 by a catalytically generated cyclobutadiene species. Journal of the American Chemical Society 1985a; 107: 234–240
  • Stearns R. A., Ortiz De Montellano P. R. Cytochrome P-450 catalysed oxidation of quadricyclane. Evidence for a radical cation intermediate. Journal of the American Chemical Society 1985b; 107: 4081–4082
  • Stewart L. C., Klinman J. P. Dopamine beta-hydroxylase of adrenal chromaffin granules: structure and function. Annual Reviews in Biochemistry 1988; 57: 551–592
  • Swann P. F., Mace R., Angeles R. M., Keefer L. K. Deuterium isotope effect on metabolism of N-nitrosodimethylamine in vivo in rat. Carcinogenesis 1983; 4: 821–825
  • Ullrich V. On the hydroxylation of cyclohexane in rat liver microsomes. Hoppe-Seyler's Zeitschrift fur Physiologische Chemie 1969; 350: 357–365
  • Wade D., Yang C. S., Metral C. J., Roman J. M., Hrabie J. A., Riggs C. W., Anjo T., Keefer L. K., Mico B. A. Deuterium isotope effect on denitrosation and demethylation of N-nitrosodimethylamine by rat liver microsomes. Cancer Research 1987; 47: 3373–3377
  • Watanabe Y., Iyanagi T., Oae S. One electron transfer mechanism in the enzymatic oxygenation of sulfoxide to sulfone promoted by a reconstituted system with purified cytochrome P-450. Tetrahedron Letters 1982a; 23: 533–536
  • Watanabe Y., Oae S., Iyanagi T. Mechanisms of enzymatic S-oxygenation of thioanisole derivatives and O-demethylation of anisole derivatives promoted by both microsomes and a reconstituted system with purified cytochrome P-450. Bulletin of the Chemical Society of Japan 1982b; 55: 188–195
  • Wei M. M., Steward R. The mechanisms of permanganate oxidation. VIII. Substituted benzylamines. Journal of the American Chemical Society 1966; 88: 1974–1979
  • White R. E., Groves J. T., McClusky G. A. Electronic and steric factors in regioselective hydroxylation catalyzed by purified cytochrome P-450. Acta Biologica et Medica Germanica 1979; 38: 475–482
  • White R. E., Miller J. P., Favreau L. V., Bhattacharyya A. Stereochemical dynamics of aliphatic hydroxylation by cytochrome P-450. Journal of the American Chemical Society 1986; 108: 6024–6031
  • Williams D. E., Reed R. L., Kedzierski B., Guengerich F. P., Buhler D. C. Bioactivation and detoxication of the pyrrolizidine alkaloid senecionine by cytochrome P-450 isozymes in rat liver. Drug Metabolism and Disposition 1989; 17: 392
  • Wimalasena K., May S. W. Mechanistic studies on dopamine β-monooxygenase catalysis: N-dealkylation and mechanism-based inhibition by benzylic-nitrogen-containing compounds. Evidence for a single-electron-transfer mechanism. Journal of the American Chemical Society 1987; 109: 4036–4046
  • Yang C. S., Ishizaki H., Lee M, Wade D., Fadel A. Deuterium isotope effect in the interaction of N-nitrosodimethylamine, ethanol, and related compounds with cytochrome P-450IIE1. Chemical Research in Toxicology 1991; 4: 408–413
  • Ziegler D. M. Flavin-containing monooxygenases: catalytic mechanism and substrate specificities. Drug Metabolism Reviews 1988; 19: 1–32
  • Ziegler D. M., Pettit F. H. Formation of an intermediate N-oxide in the oxidative demethylation of N,N-dimethylaniline catalyzed by liver microsomes. Biochemical and Biophysical Research Communications 1964; 15: 188–193

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.