Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 25, 1995 - Issue 12
26
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Stereoselective reversible ketone formation from 10-hydroxylated nortriptyline metabolites in human liver

&
Pages 1311-1325 | Received 02 Jun 1995, Published online: 22 Sep 2008

References

  • Ahmed N. K., Felsted R. L., Bachur N. R. Heterogeneity of anthracycline antibiotic carbonyl reductases in mammalian liver. Biochemical Pharmacology 1978; 27: 2713–2719
  • Baier-Weber B., Prox A., Wachsmuth H., Breyer-Pfaff U. Glucuronides of hydroxylated metabolites of amitriptyline and nortriptyline isolated from rat bile. Drug Metabolism and Disposition 1988; 16: 490–496
  • Bertilsson L., Alexanderson B. Stereospecific hydroxylation of nortriptyline in man in relation to interindividual differences in its steady-state plasma level. European Journal of Clinical Pharmacology 1972; 4: 201–205
  • Bickl M. H. Metabolism of antidepressants. Psychtropic Agents, Handbook of Experimental Pharmacology, F. Hoffmeister, G. Stille. Springer, Berlin 1980; vol. 55/1: 551–572
  • Bock J. L., Giller, Gray E. S., Jatlow P. Steady-state plasma concentrations of cis-and trans-10-OH amitriptyline metabolites. Clinical Pharmacology and Therapeutics 1982; 31: 609–616
  • Bohren K. M., Wermuth B., Harrison D., Ringe D., Petsko G. A., Gabbay K. H. Expression, crystallization and preliminary crystallographic analysis of human carbonyl reductase. Journal of Molecular Biology 1994; 244: 659–664
  • Breyer-Pfaff U., Becher B., Nusser E., Nill K., Baier-Weber B., Zaunbrecher D., Wachsmuth H., Prox A. Quaternary N-glucuronides of 10-hydroxylated amitriptyline metabolites in human urine. Xenobiotica 1990; 20: 727–738
  • Breyer-Pfaff U., Pfandl B., Nill K., Nusser E., Monney C., Jonzier-Perey M., Baettig D., Baumann P. Enantioselective amitriptyline metabolism in patients phenotyped for two cytochrome P450 isozymes. Clinical Pharmacology and Therapeutics 1992; 52: 350–358
  • Breyer-Pfaff U., Prox A., Wachsmuth H., Yao P. Phenolic metabolites of amitriptyline and nortriptyline in rat bile. Drug Metabolism and Disposition 1987; 15: 882–889
  • Dahl M. L., Nordin C., Bertilsson L. Enantioselective hydroxylation of nortriptyline in human liver microsomes, intestinal homogenate, and patients treated with nortriptyline. Therapeutic Drug Monitoring 1991; 13: 189–194
  • Dahl-Puustinen M. L., Dumont E., Bertilsson L. Glucuronidation of E-10-hydroxynortriptyline in human liver, kidney, and intestine. Organ-specific differences in enantioselectivity. Drug Metabolism and Disposition 1989a; 17: 433–435
  • Dahl-Puustinen M. L., Perry T. L., Jr, Dumont E., Von Bahr C., Nordin C., Bertilsson L. Stereoselective disposition of racemic E-10-hydroxynortriptyline in human beings. Clinical Pharmacology and Therapeutics 1989b; 45: 650–656
  • Deyashiki Y., Ogasawara A., Nakayama T., Nakanishi M., Miyabe Y., Sato K., Hara A. Molecular cloning of two human liver 3α-hydroxysteroid/dihydrodiol dehydrogenase isoenzymes that are identical with chlordecone reductase and bile-acid binder. Biochemical Journal 1994; 299: 545–552
  • Deyashiki Y., Taniguchi H., Amano T., Nakayama T., Hara A., Sawada H. Structural and functional comparison of two human liver dihydrodiol dehydrogenases associated with 3α-hydroxysteroid dehydrogenase activity. Biochemical Journal 1992; 282: 741–746
  • Eyles D. W., Pond S. M. Stereospecific reduction of haloperidol in human tissues. Biochemical Pharmacology 1992; 44: 867–871
  • Flynn T. G., Green N. C. The aldo-keto reductases: an overview. Enzymology and Molecular Biology of Carbonyl Metabolism 4, H. Weiner, D. W. Crabb, T. G. Flynn. Plenum, New York 1993; 251–257
  • Kudo K., Amuro Y., Hada T., Higashino K. Purification and properties of 3α-hydroxysteroid dehydrogenase as a 3-keto bile acid reductase from human liver cytosol. Biochimica et Biophysica Acta 1990; 1046: 12–18
  • Litters N., Schmelzeisen-Redeker G. Erfahrungen mit der schnellen HPLC im analytischen Routinelabor. GIT Fachzeitschrift für das Labor 1989; 1989: 81–83
  • Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 1951; 193: 265–275
  • Maser E. Xenobiotic carbonyl reduction and physiological steroid oxidoreduction. The pluripotency of several hydroxysteroid dehydrogenases. Biochemical Pharmacology 1995; 49: 421–440
  • Maser E., Gebel T., Netter K. J. Carbonyl reduction of metyrapone in human liver. Biochemical Pharmacology 1991; 42: S93–S98
  • Mellström B., Bertilsson L., Sawe J., Schulz H. U., Sjöqvist F. E- and Z-10-hydroxylation of nortriptyline: Relationship to polymorphic debrisoquine hydroxylation. Clinical Pharmacology and Therapeutics 1981; 30: 189–193
  • Molowa D. T., Shayne A. G., Guzelian P. S. Purification and characterization of chlordecone reductase from human liver. Journal of Biological Chemistry 1986; 261: 12624–12627
  • Nusser E., Nill K., Breyer-Pfaff U. Enantioselective formation and disposition of (E)- and (Z)-10-hydroxynortriptyline. Drug Metabolism and Disposition 1988; 16: 509–511
  • Ohara H., Nakayama T., Deyashiki Y., Hara A., Miyabe Y., Tsukada F. Reduction of prostaglandin D2 to 9α, 11β-prostaglandin F2 by a human liver 3α-hydroxysteroid/dihydrodiol dehydrogenase isozyme. Biochimica et Biophysica Acta 1994; 1215: 59–65
  • Pfandl B., Mörike K., Winne D., Schareck W., Breyer-Pfaff U. Stereoselective inhibition of nortriptyline hydroxylation in man by quinidine. Xenobiotica 1992; 22: 721–730
  • Prox A., Breyer-Pfaff U. Amitriptyline metabolites in human urine: identification of phenols, dihydrodiols, glycols, and ketones. Drug Metabolism and Disposition 1987; 15: 890–896
  • Schieber A., Frank R. W., Ghisla S. Purification and properties of prostaglandin 9-ketoreductase from pig and human kidney. Identity with human carbonyl reductase. European Journal of Biochemistry 1992; 206: 491–502
  • Stolz A., Hammond L., Lou H., Takikawa H., Ronk M., Shively J. E. cDNA cloning and expression of the human hepatic bile acid-binding protein. A member of the monomeric reductase gene family. Journal of Biological Chemistry 1993; 268: 10448–10457
  • Takikawa H., Stolz A., Sugiyama Y., Yoshida H., Yamanaka M., Kaplowitz N. Relationship between the newly identified bile acid binder and bile acid oxidoreductases in human liver. Journal of Biological Chemistry 1990; 265: 2132–2136
  • Veech R. L., Eggleston L. V., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochemical Journal 1969; 115: 609–619
  • Wermuth B. Purification and properties of an NADPH-dependent carbonyl reductase from human brain. Relationship to prostaglandin 9-ketoreductase and xenobiotic ketone reductase. Journal of Biological Chemistry 1981; 256: 1206–1213
  • Wermuth B. Aldo-keto reductases. Enzymology of Carbonyl Metabolism 2, T. G. Flynn, H. Weiner. Liss, New York 1985; 209–230
  • Wermuth B., Bohren K. M., Heinemann G., von Wartburg J. P., Gabbay K. H. Human carbonyl reductase. Nucleotide sequence analysis of a cDNA and amino acid sequence of the encoded protein. Journal of Biological Chemistry 1988; 263: 16185–16188
  • Wermuth B., Münch J. D. B., von Wartburg J. P. Stereospecificity of hydrogen transfer of aldehyde reductase. Experientia 1979; 35: 1288–1289
  • Wermuth B., Platt K. L., Seidel A., Oesch F. Carbonyl reductase provides the enzymatic basis of quinone detoxication in man. Biochemical Pharmacology 1986; 35: 1277–1282
  • Westbrook C., Lin Y. M., Jarabak J. NADP-linked 15-hydroxyprostaglandin dehydrogenase from human placenta: partial purification and characterization of the enzyme and identification of an inhibitor in placental tissue. Biochemical and Biophysical Research Communications 1978; 76: 943–949
  • Winters C. J., Molowa D. T., Guzelian P. S. Isolation and characterization of cloned cDNAs encoding human liver chlordecone reductase. Biochemistry 1990; 29: 1080–1087

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.