Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 26, 1996 - Issue 4
16
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Reductive activation of 1,1-dichloro-1-fluoroethane (HCFC-141b) by phenobarbital- and pyridine-induced rat liver microsomal cytochrome P450

, , , , &
Pages 425-435 | Received 20 Jul 1995, Published online: 22 Sep 2008

References

  • Anders M. W. Metabolism and toxicity of hydrochlorofluorocarbons: current knowledge and needs for the future. Environmental Health Perspectives 1991; 96: 185–191
  • Anders M. W., Pohl L. R. Halogenated alkanes. Bioactivation of Foreign Compounds, M. W. Anders. Academic, Orlando 1985; 283–315
  • Cheeseman K. H., Albano E. F., Tomasi A., Slater T. F. Biochemical studies on the metabolic activation of halogenated alkanes. Environmental Health Perspectives 1985; 64: 85–101
  • Falk J. E., Fisher D. A., Hales C. H., Filkin D. L., Ko M. K. W., Sze N. D., Connell P. S., Wuebbles D. J., Isaksen S. A., Stordal F. Model calculations of the relative effects of CFCs and their replacements on stratospheric ozone. Nature 1990; 344: 508–512
  • Garle M. J., Fry J. R. Detection of reactive metabolites in vitro. Toxicology 1989; 54: 101–110
  • Griffith O. W. Glutathione and glutathione disulphide. Methods of Enzymatic Analysis, 3rd edn, H. U. Bergmeyer. Chemie, Berlin 1985; vol. VIII: 521–529
  • Gruenke L. D., Konopka K., Koop D. R., Waskell L. Characterization of halothane oxidation by hepatic microsomes and purified cytochrome P-450 using gas chromatographic mass spectrometric assay. Journal of Pharmacology and Experimental Therapeutics 1988; 246: 454–459
  • Harris J. W., Anders M. W. Metabolism of the hydrochlorofluorocarbon 1,2-dichloro-1,1-difluoroethane. Chemical Research in Toxicology 1991a; 4: 180–186
  • Harris J. W., Anders M. W. In vivo metabolism of the hydrochlorofluorocarbon 1,1-dichloro-1-fluoroethane (HCFC-141b). Biochemical Pharmacology 1991b; 41: R13–16
  • Harris J. W., Pohl L. R., Martin J. L., Anders M. W. Tissue acylation by the chlorofluorocarbon substitute 2,2-dichloro-1,1,1-trifluoroethane. Proceedings of the National Academy of Sciences USA 1991; 88: 1407–1410
  • Huwyler J., Aeschlimann D., Christen U., Gut J. The kidney as a novel target tissue for protein adduct formation associated with metabolism of halothane and the candidate chlorofluorocarbon replacement 2,2-dichloro-1,1,1-trifluoroethane. European Journal of Biochemistry 1992; 207: 229–238
  • Jarabek A. M., Fisher J. W., Rubenstein R., Lipscomb J. C., Williams R. J., Vinegar A., McDougal J. N. Mechanistic insight aid the search for CFC substitutes: risk assessment of HCFC-123 as an example. Risk Analysis 1994; 14: 231–250
  • Jee R. C., Sipes I. G., Gandolfi A. J., Brown B R., Jr. Factors influencing halothane hepatotoxicity in the rat hypoxic model. Toxicology and Applied Pharmacology 1980; 52: 267–277
  • Kaul K. L., Novak R. F. inhibition and induction of rabbit liver microsomal cytochrome P-450 by pyridine. Journal of Pharmacology and Experimental Therapeutics 1987; 43: 384–390
  • Koop D. R. Hydroxylation of p-nitrophenol by rabbit ethanol-inducible cytochrome P-450 isozyme 3a. Molecular Pharmacology 1986; 29: 399–404
  • Koop D. R. Oxidative and reductive metabolism by cytochrome P-450 2E1. FASEB Journal 1992; 6: 724–730
  • Koop D. R., Morgan E. T., Tarr G. E., Coon M. J. Purification and characterization of a unique isozyme of cytochrome P-450 from liver microsomes of ethanol-treated rabbits. Journal of Biological Chemistry 1982; 257: 8472–8480
  • Lieber C. S. Mechanism of ethanol induced hepatic injury. Pharmacological Therapy 1990; 46: 1–41
  • Loizou G. D., Anders M. W. Gas-uptake pharmacokinetics and biotransformation of 1,1-dichloro-1-fluoroethane (HCFC-141b). Drug Metabolism and Disposition 1993; 21: 634–639
  • Longstreth J. Cutaneous malignant melanoma and ultraviolet radiation: a review. Cancer Metastasis Reviews 1988; 7: 321–333
  • Lowry O. H., Rosebrough N. J., Farr A. L., Randal R. J. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 1951; 193: 265–275
  • Lubet R. A., Mayer R. T., Cameron J. W., Nims R. W., Burke M. D., Wolff T., Guengerich F. P. Dealkylation of pentoxyresorufin: a rapid and sensitive assay for measuring induction of cytochrome(s) P-450 by phenobarbital and other xenobiotics in the rat. Archives of Biochemistry and Biophysics 1985; 238: 43–48
  • Manno M., De Matteis F., King L. J. The mechanism of the suicidal reductive inactivation of microsomal cytochrome P-450 by carbon tetrachloride. Biochemical Pharmacology 1988; 37: 1981–1990
  • Manno M., Cazzaro S., Rezzadore M. The mechanism of the suicidal reductive inactivation of microsomal cytochrome P-450 by halothane. Archives of Toxicology 1991; 65: 191–198
  • Manno M., Ferrara R., Cazzaro S., Rigotti P., Ancona E. Suicidal inactivation of human cytochrome P-450 by carbon tetrachloride and halothane in vitro. Pharmacology and Toxicology 1992; 70: 13–18
  • Manno M., King L. J., De Matteis F. The degradation of haem by carbon tetrachloride: metabolic activation requires a free axial coordination site on the haem iron and electron donation. Xenobiotica 1989; 19: 1023–1035
  • Manno M., Tolando R., Ferrara R., Rezzadore M., Cazzaro S. Suicidal inactivation of haemoproteins by reductive metabolites of halomethanes: a structure-activity relationship study. Toxicology 1995; 100: 175–183
  • Molina M. J., Rowland F. S. Stratospheric sink for chlorofluomethanes: chlorine atomcatalyzed destruction of ozone. Nature 1974; 249: 810–812
  • Olson M. J., Johnson J. T., O'Gara J. F., Surbrook S. E., Jr. Metabolism in vivo and in vitro of the refrigerant substitute 1,1,1,2-tetrafluoro-2-chloroethane. Drug Metabolism and Disposition 1991a; 19: 1004–1011
  • Olson M. J., Kim S. G., Reidy C. A., Johnson J. T., Novak R. F. Oxidation of 1,1,1,2-tetrafluoroethane in rat liver microsomes is catalyzed primarily by cytochrome P-450IIE1. Drug Metabolism and Disposition 1991b; 19: 298–303
  • Olson M. J., Reidy C. A., Johnson J. T., Pederson T. C. Oxidative defluorination of 1,1,1,2-tetrafluoroethane by rat liver microsomes. Drug Metabolism and Disposition 1990; 18: 992–998
  • Omura T., Sato R. The carbon monoxide binding pigment of liver microsomes. Journal of Biological Chemistry 1964; 239: 2370–2378
  • Osawa Y., Pohl L. R. Covalent bonding of the prosthetic heme to protein. A potential mechanism for the suicide inactivation or activation of hemoproteins. Chemical Research in Toxicology 1989; 2: 131–141
  • Paul K. G., Theorell H., Akeson A. The molar light absorption of pyridine ferroprotoporphyrin (pyridine haemochromogen). Acta Chimica Scandinavica 1953; 7: 1284–1287
  • Taylor H. H., West S. K., Rosenthal F. S., Munoz B., Newland H. S., Abbey H., Emmett E. A. Effect of ultraviolet radiation on cataract formation. New England Journal of Medicine 1988; 319: 1429–1433
  • Tolando R., Ferrara R., Manno M., King L. J. (1995) Reductive activation of 1,1-dichloro-1-fluoroethane (HCFC-141b) by rat liver microsomes. Fifth International Symposium on Biological Reactive Intermediates, Munich, 4–8 January, 1995, 54, abstracts
  • Tsutsumi M., Lasker J. M., Shimizu M., Rosman A. S., Lieber C. S. The intralobular distribution of ethanol-inducible P450IIE1 in rat and human liver. Hepatology 1989; 10: 437–446

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.