5
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Cellular and molecular aspects of glial-neuron interactions in the retina

&
Pages 183-189 | Accepted 15 Jun 1993, Published online: 08 Jul 2009

References

  • Hogan M J., Alvarado J A., Weddell J E. Histology of the Human Eye. WB Saunders Co., Philadelphia 1971; 557
  • Rungger-Brändle E, Messerli J M., Niemeyer G, Eppenberger H M. Confocal microscopy and computer-assisted image reconstruction of astrocytes in the mammalian retina. European J Neurosci 1993, (in press)
  • Dowling J E. The Retina. An Approachable Part of the Brain. Harvard University Press, Cambridge, MA 1987
  • Golgi C. Sulla fina anatomia degli organi centrali del sistema nervoso, V Opera Omnia Hoepli. Milano. 1903; 460
  • Tsacopoulos M, Coles J A., Van de Werve G. The supply of metabolic substrate from glia to photoreceptors in the retina of the honeybee drone. J Physiol (Paris) 1987; 82: 279–287
  • Perrelet A. A fine structure of the retina of the honeybee drone. Z Zellforsch Mikrosk Anat 1970; 108: 530–562
  • Coles J A., Tsacopoulos M. K+ activity in photoreceptors, glial cells and extracellular space in the drone retina: changes during photostimulation. J Physiol 1979; 290: 525–549
  • Coles J A. Functions of glial cells in the retina of the honeybee drone. Glia 1989; 2: 1–9
  • Dimitracos S A., Tsacopoulos M. The recovery from a transient inhibition of the oxidative metabolism of the photoreceptors of the drone (Apis mellifera 6). J Exp Biol 1985; 119: 165–181
  • Tsacopoulos M, Poitry S, Borsellino A. Diffusion and consumption of oxygen in the superfused retina of the drone (Apis mellifera) in darkness. J Gen Physiol 1981; 77: 601–628
  • Tsacopoulos M, Poitry S. Kinetics of oxygen consumption after a single flash of light in photoreceptors of the drone (Apis mellifera). J Gen Physiol 1982; 80: 19–55
  • Tsacopoulos M, Orkand R K., Coles J A., Levy S, Poitry S. Oxygen uptake occurs faster than sodium pumping in bee retina after a light flash. Nature 1983; 301: 604–606
  • Evêquoz V, Stadelmann A, Tsacopoulos M. The effect of light on glycogen turnover in the retina of the intact honeybee drone (Apis mellifera). J Comp Physiol 1983; 150: 69–75
  • Evêquoz-Mercier V, Tsacopoulos M. The light-induced increase of carbohydrate metabolism in glial cells of the honeybee retina is not mediated by K+ movement nor by cAMP. J Gen Physiol 1991; 98: 497–515
  • Tsacopoulos M, Evêquoz-Mercier V, Perrottet P, Buchner E. Honeybee retinal glial cells transform glucose and supply the neurons with metabolic substrate. Proc Natl Acad Sci USA 1988; 85: 8727–8731
  • Brazitikos P, Tsacopoulos M. Metabolic signaling between photoreceptors and glial cells in the retina of the drone (Apis mellifera). Brain Res 1991; 567: 33–41
  • Tsacopoulos M, Veuthey A L., Perrottet P, Tsoupras G. Glial cells transform glucose to alanine which fuels the neurons in the honeybee retina. J Neurosci 1993, (submitted)
  • Kuwabara T, Cogan D G. Tetrazolium studies on the retina: III. Activity of metabolic intermediates and miscellaneous substrates. J Histochem Cytochem 1960; 8: 214–224
  • Kuwabara T, Cogan D G. Retinal glycogen. Arch Ophthalmol 1961; 66: 96–104
  • Poitry-Yamate C, Tsacopoulos M. Glial (Müller) cells take up and phosphorylate [3H]2-deoxy-D-glucose in a mammalian retina. Neurosci Letters 1991; 122: 241–244
  • Gardner-Medwin A R., Coles J A., Tsacopoulos M. Clearance of extracellular potassium: evidence for spatial buffering by glial cells in the retina of the drone. Brain Res 1981; 209: 452–457
  • Coles J A., Tsacopoulos M. Ionic and possible metabolic interactions between sensory neurones and glial cells in the retina of the honeybee drone. J Exp Biol 1981; 95: 75–92
  • Newman E A. Distribution of potassium conductance in mammalian Müller (glial) cells. A comparative study. J Neurosci 1987; 7: 2423–2432
  • Karwoski C J., Lu H-K, Newman E A. Spatial buffering of light-evoked potassium increases by retinal Müller (glial) cells. Science 1989; 244: 578–580
  • Barbour B, Brew H, Attwell D. Electrogenic glutamate uptake in glial cells is activated by intracellular potassium. Nature 1988; 335: 433–435
  • Miller F, Slaughter M M. Excitatory amino acid receptors of the retina: diversity of subtypes and conductance mechanisms. Trends Neurosci 1986; 9: 211–219
  • Rothman S M., Dubinsky J M., Michaels R L. In vitro neuronal death: Contrasts between excitotoxicity and chemical hypoxia. Glutamate, Cell Death and Memory, P Ascher, D W. Choi, Y Christen. Springer-Verlag, Ber-lin 1991; 102–116
  • Brew H, Attwell D. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells. Nature 1987; 327: 707–709
  • Hertz L, Yu A CH, Potter R L., Fisher T E., Schousboe A. Metabolic fluxes from glutamate and towards glutamate in neurons and astrocytes in primary cultures. Glutamine, Glutamate and GABA in the Central Nervous System, L Hertz, E Kvamme, E G. McGeer, A Schousboe. Alan R Liss, New York 1983; 327–342
  • Poitry-Yamate C, Tsacopoulos M. Glucose metabolism in freshly isolated Miiller glial cells from a mammalian retina. J Comp Neurol 1992; 320: 257–266
  • Poitry-Yamate C L., Tsacopoulos M. Formation and release of carbohydrate intermediates and amino acids by freshly isolated mammalian Müller glial cells. ARVO Annual Meeting, Sarasota. Suppl Invest Ophthalmol Vis Sci 1993; 34: 1279, (Abstract)
  • Palmer R MJ, Ferrige A G., Moncada S. Release of nitric oxide accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524–526
  • Ignaro L J. Endothelium-derived nitric oxide: actions and properties. FASEB 1989; 3: 31–36
  • Gaily J A., Montague P R., Reeke G N., Jr, Edelman G M. The NO hypothesis: Possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc Natl Acad Sci USA 1990; 87: 3547–3551
  • Murphy S, Minor R L., Jr, Welk G, Harrison D G. Evidence for an astrocyte-derived vasorelaxing factor with properties similar to nitric oxide. J Neurochem 1990; 55: 349–351
  • Aoki E, Semba R, Mikoshiba K, Kashiwamata S. Predominant localization in glial cells of free L-arginine. Immunocytochemical evidence. Brain Res 1991; 547: 190–192
  • Knowles R G., Palacios M, Palmer R M., Moncada S. Formation of nitric oxide from L-arginine in the central nervous system: A transduction mechanism for stimulation of the soluble guanylate cyclase. Proc Natl Acad Sci USA 1989; 86: 5159–5162
  • Tilton R G., Chang K, Hasan K S., Smith S R., Petrash J M., Misko T P., et al. Prevention of diabetic vascular dysfunction by guanidines. Inhibition of nitric oxide synthase versus advanced glycation end-product formation. Diabetes 1993; 42: 221–232
  • Hasan T S., Hartzer M, Cheng M, Magat C B., Shettle L, Trese M, Williams G A. Angiogenic inhibition by medroxyprogesterone acetate in the chick chorioallantoic membrane model. ARVO Annual Meeting, Sarasota. Suppl Invest Ophthal Vis Sci 1993; 34: 841, (Abstract)
  • Pournaras C J., Munoz J-L, Donati G, Brazitikos P D., Tsacopoulos M. The role of the release of nitric oxide in the regulation of retinal vasomotricity. ARVO Annual Meeting, Sarasota. Suppl Invest Ophthal Vis Sci 1993; 34: 1394

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.