257
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Genetic Modifiers of comatose Mutations in Drosophila: Insights Into Neuronal NSF (N-Ethylmaleimide–Sensitive Fusion Factor) Functions

&
Pages 348-359 | Received 22 Mar 2012, Accepted 23 May 2012, Published online: 20 Jul 2012

REFERENCES

  • Balch, W. E., Dunphy, W. G., Braell, W. A., & Rothman, J. E. (1984). Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell, 39(2 Pt 1), 405–416.
  • Banerjee, A., Barry, V. A., DasGupta, B. R., & Martin, T. F. (1996). N-Ethylmaleimide-sensitive factor acts at a prefusion ATP-dependent step in Ca2+-activated exocytosis. J Biol Chem, 271, 20223–20226.
  • Barlowe, C. (1997). Coupled ER to Golgi transport reconstituted with purified cytosolic proteins. J Cell Biol, 139, 1097–1108.
  • Barnard, R. J., Morgan, A., & Burgoyne, R. D. (1997). Stimulation of NSF ATPase activity by alpha-SNAP is required for SNARE complex disassembly and exocytosis. J Cell Biol, 139, 875–883.
  • Block, M. R., Glick, B. S., Wilcox, C. A., Wieland, F. T., & Rothman, J. E. (1988). Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. Proc Natl Acad Sci U S A, 85, 7852–7856.
  • Blumenstiel, J. P., Noll, A. C., Griffiths, J. A., Perera, A. G., Walton, K. N., Gilliland, W. D., . (2009). Identification of EMS-induced mutations in Drosophila melanogaster by whole-genome sequencing. Genetics, 182, 25–32.
  • Boulianne, G. L., & Trimble, W. S. (1995). Identification of a second homolog of N-ethylmaleimide-sensitive fusion protein that is expressed in the nervous system and secretory tissues of Drosophila. Proc Natl Acad Sci U S A, 92, 7095–7099.
  • Chandrashekaran, S., & Sarla, N. (1993). Phenotypes of lethal alleles of the recessive temperature sensitive paralytic mutant stambh A of Drosophila melanogaster suggest its neurogenic function. Genetica, 90, 61–71.
  • Clary, D. O., Griff, I. C., & Rothman, J. E. (1990). SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell, 61, 709–721.
  • Cleves, A. E., & Bankaitis, V. A. (1992). Secretory pathway function in Saccharomyces cerevisiae. Adv Microb Physiol, 33, 73–144.
  • Colombo, M. I., Taddese, M., Whiteheart, S. W., & Stahl, P. D. (1996). A possible predocking attachment site for N-ethylmaleimide-sensitive fusion protein. Insights from in vitro endosome fusion. J Biol Chem, 271, 18810–18816.
  • Dellinger, B., Felling, R., & Ordway, R. W. (2000). Genetic modifiers of the Drosophila NSF mutant, comatose, include a temperature-sensitive paralytic allele of the calcium channel alpha1-subunit gene, cacophony. Genetics, 155, 203–211.
  • Eakle, K. A., Bernstein, M., & Emr, S. D. (1988). Characterization of a component of the yeast secretion machinery: Identification of the SEC18 gene product. Mol Cell Biol, 8, 4098–4109.
  • Fiebig, K. M., Rice, L. M., Pollock, E., & Brunger, A. T. (1999). Folding intermediates of SNARE complex assembly. Nat Struct Biol, 6, 117–123.
  • Finger, F. P., & Novick, P. (1998). Spatial regulation of exocytosis: Lessons from yeast. J Cell Biol, 142, 609–612.
  • Freeman, A., Bowers, M., Mortimer, A. V., Timmerman, C., Roux, S., Ramaswami, M., . (2011). A new genetic model of activity-induced Ras signaling dependent pre-synaptic plasticity in Drosophila. Brain Res, 1326, 15–29.
  • Furst, J., Sutton, R. B., Chen, J., Brunger, A. T., & Grigorieff, N. (2003). Electron cryomicroscopy structure of N-ethyl maleimide sensitive factor at 11 A resolution. EMBO J, 22, 4365–4374.
  • Golby, J. A., Tolar, L. A., & Pallanck, L. (2001). Partitioning of N-ethylmaleimide-sensitive fusion (NSF) protein function in Drosophila melanogaster: dNSF1 is required in the nervous system, and dNSF2 is required in mesoderm. Genetics, 158, 265–278.
  • Graham, T. R., & Emr, S. D. (1991). Compartmental organization of Golgi-specific protein modification and vacuolar protein sorting events defined in a yeast sec18 (NSF) mutant. J Cell Biol, 114, 207–218.
  • Grigliatti, T., Suzuki, D. T., & Williamson, R. (1972). Temperature- sensitive mutation in Drosophila melano-gaster. X. Developmental analysis of the paralytic mutation, para ts. Dev Biol, 28, 352–371.
  • Haas, A. (1998). NSF—Fusion and beyond. Trends Cell Biol, 8, 471–473.
  • Hanson, P. I., Otto, H., Barton, N., & Jahn, R. (1995). The N-ethylmaleimide-sensitive fusion protein and alpha-SNAP induce a conformational change in syntaxin. J Biol Chem, 270, 16955–16961.
  • Hanson, P. I., Roth, R., Morisaki, H., Jahn, R., & Heuser, J. E. (1997). Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell, 90, 523–535.
  • Haynes, L. P., Barnard, R. J., Morgan, A., & Burgoyne, R. D. (1998). Stimulation of NSF ATPase activity during t-SNARE priming. FEBS Lett, 436, 1–5.
  • Hicke, L., & Schekman, R. (1990). Molecular machinery required for protein transport from the endoplasmic reticulum to the Golgi complex. Bioessays, 12, 253–258.
  • Hoeffer, C. A., Sanyal, S., & Ramaswami, M. (2003). Acute induction of conserved synaptic signaling pathways in Drosophila melanogaster. J Neurosci, 23, 6362–6372.
  • Hohl, T. M., Parlati, F., Wimmer, C., Rothman, J. E., Sollner, T. H., & Engelhardt, H. (1998). Arrangement of subunits in 20 S particles consisting of NSF, SNAPs, and SNARE complexes. Mol Cell, 2, 539–548.
  • Homyk, T., Jr., Szidonya, J., & Suzuki, D. T. (1980). Behavioral mutants of Drosophila melanogaster. III. Isolation and mapping of mutations by direct visual observations of behavioral phenotypes. Mol Gen Genet, 177, 553–565.
  • Hong, Y. R., Chen, C. H., Cheng, D. S., Howng, S. L., & Chow, C. C. (1998). Human dynamin-like protein interacts with the glycogen synthase kinase 3beta. Biochem Biophys Res Commun, 249, 697–703.
  • Kaiser, C. A., & Schekman, R. (1990). Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell, 61, 723–733.
  • Kawasaki, F., Mattiuz, A. M., & Ordway, R. W. (1998). Synaptic physiology and ultrastructure in comatose mutants define an in vivo role for NSF in neurotransmitter release. J Neurosci, 18, 10241–10249.
  • Kawasaki, F., & Ordway, R. W. (2009). Molecular mechanisms determining conserved properties of short-term synaptic depression revealed in NSF and SNAP-25 conditional mutants. Proc Natl Acad Sci U S A, 106, 14658–14663.
  • Lenzen, C. U., Steinmann, D., Whiteheart, S. W., & Weis, W. I. (1998). Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. Cell, 94, 525–536.
  • Littleton, J. T., Barnard, R. J., Titus, S. A., Slind, J., Chapman, E. R., & Ganetzky, B. (2001). SNARE-complex disassembly by NSF follows synaptic-vesicle fusion. Proc Natl Acad Sci U S A, 98, 12233–12238.
  • Littleton, J. T., Chapman, E. R., Kreber, R., Garment, M. B., Carlson, S. D., & Ganetzky, B. (1998). Temperature-sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex assembly and disassembly. Neuron, 21, 401–413.
  • Littleton, J. T., Stern, M., Perin, M., & Bellen, H. J. (1994). Calcium dependence of neurotransmitter release and rate of spontaneous vesicle fusions are altered in Drosophila synaptotagmin mutants. Proc Natl Acad Sci U S A, 91, 10888–10892.
  • Lledo, P. M. (1997). Exocytosis in excitable cells: A conserved molecular machinery from yeast to neuron. Eur J Endocrinol, 137, 1–9.
  • Mayer, A., Wickner, W., & Haas, A. (1996). Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles. Cell, 85, 83–94.
  • Morgan, A., Dimaline, R., & Burgoyne, R. D. (1994). The ATPase activity of N-ethylmaleimide-sensitive fusion protein (NSF) is regulated by soluble NSF attachment proteins. J Biol Chem, 269, 29347–29350.
  • Mostov, K. E., & Cardone, M. H. (1995). Regulation of protein traffic in polarized epithelial cells. Bioessays, 17, 129–138.
  • Muller, J. M., Rabouille, C., Newman, R., Shorter, J., Freemont, P., Schiavo, G., . (1999). An NSF function distinct from ATPase-dependent SNARE disassembly is essential for Golgi membrane fusion. Nat Cell Biol, 1, 335–340.
  • Neuwald, A. F. (1999). The hexamerization domain of N-ethylmaleimide-sensitive factor: Structural clues to chaperone function. Structure, 7, R19–;R23.
  • Ordway, R. W., Pallanck, L., & Ganetzky, B. (1994). Neurally expressed Drosophila genes encoding homologs of the NSF and SNAP secretory proteins. Proc Natl Acad Sci U S A, 91, 5715–5719.
  • Osten, P., Srivastava, S., Inman, G. J., Vilim, F. S., Khatri, L., Lee, L. M., . (1998). The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alpha- and beta-SNAPs. Neuron, 21, 99–110.
  • Pallanck, L., Ordway, R. W., & Ganetzky, B. (1995a). A Drosophila NSF mutant. Nature, 376, 25.
  • Pallanck, L., Ordway, R. W., Ramaswami, M., Chi, W. Y., Krishnan, K. S., & Ganetzky, B. (1995b). Distinct roles for N-ethylmaleimide-sensitive fusion protein (NSF) suggested by the identification of a second Drosophila NSF homolog. J Biol Chem, 270, 18742–18744.
  • Pelham, H. R. (1991). Recycling of proteins between the endoplasmic reticulum and Golgi complex. Curr Opin Cell Biol, 3, 585–591.
  • Pfeffer, S. R. (1996). Transport vesicle docking: SNAREs and associates. Annu Rev Cell Dev Biol, 12, 441–461.
  • Pfeffer, S. R., & Rothman, J. E. (1987). Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu Rev Biochem, 56, 829–852.
  • Ramaswami, M., Rao, S., van der Bliek, A., Kelly, R. B., & Krishnan, K. S. (1993). Genetic studies on dynamin function in Drosophila. J Neurogenet, 9, 73–87.
  • Rodriguez-Boulan, E., & Zurzolo, C. (1993). Polarity signals in epithelial cells. J Cell Sci Suppl, 17, 9–12.
  • Rorth, P. (1996). A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc Natl Acad Sci U S A, 93, 12418–12422.
  • Rothman, J. E., & Wieland, F. T. (1996). Protein sorting by transport vesicles. Science, 272, 227–234.
  • Sanyal, S., Basole, A., & Krishnan, K. S. (1999). Phenotypic interaction between temperature-sensitive paralytic mutants comatose and paralytic suggests a role for N-ethylmaleimide-sensitive fusion factor in synaptic vesicle cycling in Drosophila. J Neurosci, 19, RC47.
  • Sanyal, S., Tolar, L. A., Pallanck, L., & Krishnan, K. S. (2001). Genetic interaction between shibire and comatose mutations in Drosophila suggest a role for snap-receptor complex assembly and disassembly for maintenance of synaptic vesicle cycling. Neurosci Lett, 311, 21–24.
  • Siddiqi, O., & Benzer, S. (1976). Neurophysiological defects in temperature-sensitive paralytic mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A, 73, 3253–3257.
  • Sollner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H., & Rothman, J. E. (1993a). A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell, 75, 409–418.
  • Sollner, T., Whiteheart, S. W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P., . (1993b). SNAP receptors implicated in vesicle targeting and fusion. Nature, 362, 318–324.
  • Spang, A. (2009). On vesicle formation and tethering in the ER-Golgi shuttle. Curr Opin Cell Biol, 21, 531–536.
  • St Johnston, D. (2002). The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet, 3, 176–188.
  • Stewart, B. A., Mohtashami, M., Rivlin, P., Deitcher, D. L., Trimble, W. S., & Boulianne, G. L. (2002). Dominant-negative NSF2 disrupts the structure and function of Drosophila neuromuscular synapses. J Neurobiol, 51, 261–271.
  • Stewart, B. A., Pearce, J., Bajec, M., & Khorana, R. (2005). Disruption of synaptic development and ultrastructure by Drosophila NSF2 alleles. J Comp Neurol, 488, 101–111.
  • Strittmatter, W. J. (1988). Molecular mechanisms of exocytosis: The adrenal chromaffin cell as a model system. Cell Mol Neurobiol, 8, 19–25.
  • Suzuki, D. T. (1970). Temperature-sensitive mutations in Drosophila melanogaster. Science, 170, 695–706.
  • Suzuki, D. T., Grigliatti, T., & Williamson, R. (1971). Temperature-sensitive mutations in Drosophila melanogaster. VII. A mutation (para-ts) causing reversible adult paralysis. Proc Natl Acad Sci U S A, 68, 890–893.
  • Tolar, L. A., & Pallanck, L. (1998). NSF function in neurotransmitter release involves rearrangement of the SNARE complex downstream of synaptic vesicle docking. J Neurosci, 18, 10250–10256.
  • Wattenberg, B. W., & Rothman, J. E. (1986). Multiple cytosolic components promote intra-Golgi protein transport. Resolution of a protein acting at a late stage, prior to membrane fusion. J Biol Chem, 261, 2208–2213.
  • Weidman, P. J., Melancon, P., Block, M. R., & Rothman, J. E. (1989). Binding of an N-ethylmaleimide-sensitive fusion protein to Golgi membranes requires both a soluble protein(s) and an integral membrane receptor. J Cell Biol, 108, 1589–1596.
  • Yu, R. C., Hanson, P. I., Jahn, R., & Brunger, A. T. (1998). Structure of the ATP-dependent oligomerization domain of N-ethylmaleimide sensitive factor complexed with ATP. Nat Struct Biol, 5, 803–811.
  • Yu, R. C., Jahn, R., & Brunger, A. T. (1999). NSF N-terminal domain crystal structure: Models of NSF function. Mol Cell, 4, 97–107.
  • Yu, W., Kawasaki, F., & Ordway, R. W. (2011). Activity-dependent interactions of NSF and SNAP at living synapses. Mol Cell Neurosci, 47, 19–27.
  • Zhao, C., Slevin, J. T., & Whiteheart, S. W. (2007). Cellular functions of NSF: Not just SNAPs and SNAREs. FEBS Lett, 581, 2140–2149.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.