328
Views
8
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH ARTICLES

Avoidance of Heat and Attraction to Optogenetically Induced Sugar Sensation as Operant Behavior in Adult Drosophila

, , , , &
Pages 298-305 | Received 28 Mar 2012, Accepted 30 May 2012, Published online: 27 Jul 2012

REFERENCES

  • Aso, Y., Siwanowicz, I., Bracker, L., Ito, K., Kitamoto, T., & Tanimoto, H. (2010).Specific dopaminergic neurons for the formation of labile aversive memory. Curr Biol, 20, 1445–1451.
  • Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Res Rev, 28, 309–369.
  • Bloomquist, B. T., Shortridge, R. D., Schneuwly, S., Perdew, M., Montell, C., Steller, H., Rubin, G. & Pak W. L. (1988). Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction. Cell, 54, 723–733.
  • Booker, R., & Quinn, W. G. (1981). Conditioning of leg position in normal and mutant Drosophila. Proc Natl Acad Sci U S A, 78, 3940–3944.
  • Boureau, Y. L., & Dayan, P. (2011). Opponency revisited: Competition and cooperation between dopamine and serotonin. Neuropsychopharmacology, 36, 74–97.
  • Brand, A. H., & Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118, 401–415.
  • Brembs, B., & Heisenberg, M. (2000). The operant and the classical in conditioned orientation of Drosophila melanogaster at the flight simulator. Learn Memory, 7, 104–115.
  • Buchner, E. (1976). Elementary movement detectors in an insect visual system. Biol Cybernet, 24, 85–101.
  • Chiappe, M. E., Seelig, J. D., Reiser, M. B., & Jayaraman, V. (2010). Walking modulates speed sensitivity in Drosophila motion vision. Curr Biol, 20, 1470–1475.
  • Chyb, S., Dahanukar, A., Wickens, A., & Carlson, J. R. (2003). Drosophila Gr5a encodes a taste receptor tuned to trehalose. Proc Natl Acad Sci U S A, 100(Suppl 2), 14526–14530.
  • Claridge-Chang, A., Roorda, R. D., Vrontou, E., Sjulson, L., Li, H., Hirsh, J., & Miesenböck, G. (2009). Writing memories with light-addressable reinforcement circuitry. Cell, 139, 405–415.
  • Dahanukar, A., Foster, K., van der Goes van Naters, W. M., & Carlson, J. R. (2001). A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila. Nat Neurosci, 4, 1182–1186.
  • Dahanukar, A., Lei, Y. T., Kwon, J. Y., & Carlson, J. R. (2007). Two Gr genes underlie sugar reception in Drosophila. Neuron, 56, 503–516.
  • Deisseroth, K., Feng, G., Majewska, A. K., Miesenbock, G., Ting, A., & Schnitzer, M. J. (2006). Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci, 26, 10380–10386.
  • Fiala, A., Hofbauer, A., & Wu, C. F. (2010). From synapses to behavior: Neurobiology in Drosophila. J Neurogenet, 24, 91–92.
  • Gordon, M. D., & Scott, K. (2009). Motor control in a Drosophila taste circuit. Neuron, 61, 373–384.
  • Hammer, M. (1993). An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature, 366, 59–63.
  • Hammer, M., & Menzel, R. (1998). Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn Memory, 5, 146–156.
  • Heisenberg, M., & Böhl, K. (1979). Isolation of anatomical brain mutants of Drosophila melanogaster by histological means. Z Naturforsch, 34, 143–147.
  • Hoebel, B. G., Avena, N. M., & Rada, P. (2007). Accumbens dopamine-acetylcholine balance in approach and avoidance. Curr Opin Pharmacol, 7, 617–627.
  • Honjo, K., & Furukubo-Tokunaga, K. (2009). Distinctive neuronal networks and biochemical pathways for appetitive and aversive memory in Drosophila larvae. J Neurosci, 29, 852–862.
  • Mariath, H. A. (1985). Operant conditioning in Drosophila melanogaster wild-type and learning mutants with defects in cyclic AMP metabolism. J Insect Physiol, 31, 779–787.
  • Mizunami, M., Unoki, S., Mori, Y., Hirashima, D., Hatano, A., & Matsumoto, Y. (2009). Roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in an insect. BMC Biol, 7, 46.
  • Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P., & Bamberg, E. (2003). Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A, 100, 13940–13945.
  • Olds, J., & Milner, P. (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol, 47, 419–427.
  • Olsen, S. R., & Wilson, R. I. (2008). Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature, 452, 956–960.
  • Pearn, M. T., Randall, L. L., Shortridge, R. D., Burg, M. G., & Pak, W. L. (1996). Molecular, biochemical, and electrophysiological characterization of Drosophila norpA mutants. J Biol Chem, 271, 4937–4945.
  • Putz, G., Bertolucci, F., Raabe, T., Zars, T., & Heisenberg, M. (2004). The S6KII (rsk) gene of Drosophila melanogaster differentially affects an operant and a classical learning task. J Neurosci, 24, 9745–9751.
  • Putz, G., & Heisenberg, M. (2002). Memories in Drosophila heat-box learning. Learn Memory, 9, 349–359.
  • Rada, P. V., & Hoebel, B. G. (2001). Aversive hypothalamic stimulation releases acetylcholine in the nucleus accumbens, and stimulation-escape decreases it. Brain Research, 888, 60–65.
  • Schroll, C., Riemensperger, T., Bucher, D., Ehmer, J., Voller, T., Erbguth, K., Gerber, B., Hendel, T., Nagel, G., Buchner, E., & Fiala, A. (2006). Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr Biol, 16, 1741–1747.
  • Schultz, W. (2001). Reward signaling by dopamine neurons. Neuroscientist, 7, 293–302.
  • Schultz, W. (2007). Behavioral dopamine signals. Trends Neurosci, 30, 203–210.
  • Schwaerzel, M., Monastirioti, M., Scholz, H., Friggi-Grelin, F., Birman, S., & Heisenberg, M. (2003). Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J Neurosci, 23, 10495–10502.
  • Seelig, J. D., Chiappe, M. E., Lott, G. K., Dutta, A., Osborne, J. E., Reiser, M. B., & Jayaraman, V. (2010). Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior. Nat Methods, 7, 535–540.
  • Simpson, J. H. (2009). Mapping and manipulating neural circuits in the fly brain. Adv Genet, 65, 79–143.
  • Ueno, K., Ohta, M., Morita, H., Mikuni, Y., Nakajima, S., Yamamoto, K., & Isono, K. (2001). Trehalose sensitivity in Drosophila correlates with mutations in and expression of the gustatory receptor gene Gr5a. Curr Biol, 11, 1451–1455.
  • Unoki, S., Matsumoto, Y., & Mizunami, M. (2006). Roles of octopaminergic and dopaminergic neurons in mediating reward and punishment signals in insect visual learning. Eur J Neurosci, 24, 2031–2038.
  • Wise, R. A. (1996). Addictive drugs and brain stimulation reward. Annu Rev Neurosci, 19, 319–340.
  • Wolf, R., & Heisenberg, M. (1991). Basic organization of operant behavior as revealed in Drosophila flight orientation. J Comp Physiol, 169, 699–705.
  • Wustmann, G., Rein, K., Wolf, R., & Heisenberg, M. (1996). A new paradigm for operant conditioning of Drosophila melanogaster. J Comp Physiol, 179, 429–436.
  • Zhang, W., Ge, W., & Wang, Z. (2007). A toolbox for light control of Drosophila behaviors through Channelrhodopsin 2-mediated photoactivation of targeted neurons. Eur J Neurosci, 26, 2405–2416.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.