1,090
Views
29
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Potassium Channels in Drosophila: Historical Breakthroughs, Significance, and Perspectives

, , &
Pages 275-290 | Received 30 Jul 2012, Accepted 26 Oct 2012, Published online: 27 Nov 2012

REFERENCES

  • Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., . (2000). The genome sequence of Drosophila melanogaster. Science, 287, 2185–2195.
  • Anderson, C. L., Delisle, B. P., Anson, B. D., Kilby, J. A., Will, M. L., Tester, D. J., . (2006). Most LQT2 mutations reduce Kv11.1 (hERG) current by a class 2 (trafficking-deficient) mechanism. Circulation, 113, 365–373.
  • Antonucci, D. E., Lim, S. T., Vassanelli, S., & Trimmer, J. S. (2001). Dynamic localization and clustering of dendritic Kv2.1 voltage-dependent potassium channels in developing hippocampal neurons. Neuroscience, 108, 69–81.
  • Asher, V., Sowter, H., Shaw, R., Bali, A., & Khan, R. (2010). Eag and HERG potassium channels as novel therapeutic targets in cancer. World J Surg Oncol, 8, 113.
  • Atkinson, N. S., Robertson, G. A., & Ganetzky, B. (1991). A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science, 253, 551–555.
  • Baranauskas, G., Tkatch, T., & Surmeier, D. J. (1999). Delayed rectifier currents in rat globus pallidus neurons are attributable to Kv2.1 and Kv3.1/3.2 K(+) channels.J Neurosci, 19, 6394–6404.
  • Barhanin, J., Lesage, F., Guillemare, E., Fink, M., Lazdunski, M., & Romey, G. (1996). K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature, 384, 78–80.
  • Becker, M. N., Brenner, R., & Atkinson, N. S. (1995). Tissue-specific expression of a Drosophila calcium-activated potassium channel. J Neurosci, 15, 6250–6259.
  • Beeton, C., Wulff, H., Standifer, N. E., Azam, P., Mullen, K. M., Pennington, M. W., . (2006). Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci U S A, 103, 17414–17419.
  • Belacortu, Y., & Paricio, N. (2011). Drosophila as a model of wound healing and tissue regeneration in vertebrates. Dev Dyn, 240, 2379–2404.
  • Bellocq, C., van Ginneken, A. C., Bezzina, C. R., Alders, M., Escande, D., Mannens, M. M., . (2004). Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation, 109, 2394–2397.
  • Bier, E. (2005). Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet, 6, 9–23.
  • Bohm, R. A., Welch, W. P., Goodnight, L. K., Cox, L. W., Henry, L. G., Gunter, T. C., . (2010). A genetic mosaic approach for neural circuit mapping in Drosophila. Proc Natl Acad Sci U S A, 107, 16378–16383.
  • Bonini, N. M., & Gitler, A. D. (2011). Model organisms reveal insight into human neurodegenerative disease: Ataxin-2 intermediate-length polyglutamine expansions are a risk factor for ALS. J Mol Neurosci, 45, 676–683.
  • Brand, A. H., & Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118, 401–415.
  • Brew, H. M., Gittelman, J. X., Silverstein, R. S., Hanks, T. D., Demas, V. P., Robinson, L. C., . (2007). Seizures and reduced life span in mice lacking the potassium channel subunit Kv1.2, but hypoexcitability and enlarged Kv1 currents in auditory neurons. J Neurophysiol, 98, 1501–1525.
  • Broughton, S. J., Kitamoto, T., & Greenspan, R. J. (2004). Excitatory and inhibitory switches for courtship in the brain of Drosophila melanogaster. Curr Biol, 14, 538–547.
  • Browne, D. L., Brunt, E. R., Griggs, R. C., Nutt, J. G., Gancher, S. T., Smith, E. A., . (1995). Identification of two new KCNA1 mutations in episodic ataxia/myokymia families. Hum Mol Genet, 4, 1671–1672.
  • Browne, D. L., Gancher, S. T., Nutt, J. G., Brunt, E. R., Smith, E. A., Kramer, P., . (1994). Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet, 8, 136–140.
  • Brugada, R., Hong, K., Dumaine, R., Cordeiro, J., Gaita, F., Borggrefe, M., . (2004). Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation, 109, 30–35.
  • Bruggemann, A., Pardo, L. A., Stuhmer, W., & Pongs, O. (1993). Ether-a-go-go encodes a voltage-gated channel permeable to K+ and Ca2+ and modulated by cAMP. Nature, 365, 445–448.
  • Brundel, B. J., Van Gelder, I. C., Henning, R. H., Tuinenburg, A. E., Wietses, M., Grandjean, J. G., . (2001). Alterations in potassium channel gene expression in atria of patients with persistent and paroxysmal atrial fibrillation: Differential regulation of protein and mRNA levels for K+ channels. J Am Coll Cardiol, 37, 926–932.
  • Butler, A., Tsunoda, S., McCobb, D. P., Wei, A., & Salkoff, L. (1993). mSlo, a complex mouse gene encoding “maxi” calcium-activated potassium channels. Science, 261, 221–224.
  • Butler, A., Wei, A. G., Baker, K., & Salkoff, L. (1989). A family of putative potassium channel genes in Drosophila. Science, 243, 943–947.
  • Camacho, J. (2006). Ether a go-go potassium channels and cancer. Cancer Lett, 233, 1–9.
  • Cavaliere, S., & Hodge, J. J. (2011). Drosophila KCNQ channel displays evolutionarily conserved electrophysiology and pharmacology with mammalian KCNQ channels. PLoS ONE, 6, e23898.
  • Chandy, K. G., Wulff, H., Beeton, C., Pennington, M., Gutman, G. A., & Cahalan, M. D. (2004). K+ channels as targets for specific immunomodulation. Trends Pharmacol Sci, 25, 280–289.
  • Charlier, C., Singh, N. A., Ryan, S. G., Lewis, T. B., Reus, B. E., Leach, R. J., . (1998). A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family [see comments]. Nat Genet, 18, 53–55.
  • Chen, M. L., Hoshi, T., & Wu, C. F. (1996). Heteromultimeric interactions among K+ channel subunits from Shaker and eag families in Xenopus oocytes. Neuron, 17, 535–542.
  • Chen, Y. H., Xu, S. J., Bendahhou, S., Wang, X. L., Wang, Y., Xu, W. Y., . (2003). KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science, 299, 251–254.
  • Chopra, M., Gu, G. G., & Singh, S. (2000). Mutations affecting the delayed rectifier potassium current in Drosophila. J Neurogenet, 14, 107–123.
  • Chouinard, S. W., Wilson, G. F., Schlimgen, A. K., & Ganetzky, B. (1995). A potassium channel beta subunit related to the aldo-keto reductase superfamily is encoded by the Drosophila hyperkinetic locus. Proc Natl Acad Sci U S A, 92, 6763–6767.
  • Cirelli, C., Bushey, D., Hill, S., Huber, R., Kreber, R., Ganetzky, B., . (2005). Reduced sleep in Drosophila Shaker mutants. Nature, 434, 1087–1092.
  • Clark, J. D., & Tempel, B. L. (1998). Hyperalgesia in mice lacking the Kv1.1 potassium channel gene. Neurosci Lett, 251, 121–124.
  • Covarrubias, M., Wei, A. A., & Salkoff, L. (1991). Shaker, Shal, Shab, and Shaw express independent K+ current systems. Neuron, 7, 763–773.
  • Curran, M. E., Splawski, I., Timothy, K. W., Vincent, G. M., Green, E. D., & Keating, M. T. (1995). A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell, 80, 795–803.
  • Davis, R. L. (1993). Mushroom bodies and Drosophila learning. Neuron, 11, 1–14.
  • Davis, R. L. (1996). Physiology and biochemistry of Drosophila learning mutants. Physiol Rev, 76, 299–317.
  • DeCoursey, T. E., Chandy, K. G., Gupta, S., & Cahalan, M. D. (1984). Voltage-gated K+ channels in human T lymphocytes: A role in mitogenesis?Nature, 307, 465–468.
  • Derst, C., Walther, C., Veh, R. W., Wicher, D., & Heinemann, S. H. (2006). Four novel sequences in Drosophila melanogaster homologous to the auxiliary Para sodium channel subunit TipE. Biochem Biophys Res Commun, 339, 939–948.
  • Dietzl, G., Chen, D., Schnorrer, F., Su, K. C., Barinova, Y., Fellner, M., . (2007). A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature, 448, 151–156.
  • Drysdale, R., Warmke, J., Kreber, R., & Ganetzky, B. (1991). Molecular characterization of eag: A gene affecting potassium channels in Drosophila melanogaster. Genetics, 127, 497–505.
  • Du, W., Bautista, J. F., Yang, H., Diez-Sampedro, A., You, S. A., Wang, L., . (2005). Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet, 37, 733–738.
  • Dubin, A. E., Liles, M. M., & Harris, G. L. (1998). The K+ channel gene ether a go-go is required for the transduction of a subset of odorants in adult Drosophila melanogaster. J Neurosci, 18, 5603–5613.
  • Dubnau, J., & Tully, T. (1998). Gene discovery in Drosophila: New insights for learning and memory. Annu Rev Neurosci, 21, 407–444.
  • Duffy, J. B. (2002). GAL4 system in Drosophila: A fly geneticist's Swiss army knife. Genesis, 34, 1–15.
  • Elkins, T., & Ganetzky, B. (1988). The roles of potassium currents in Drosophila flight muscles. J Neurosci, 8, 428–434.
  • Elkins, T., & Ganetzky, B. (1990). Conduction in the giant nerve fiber pathway in temperature-sensitive paralytic mutants of Drosophila. J Neurogenet, 6, 207–219.
  • Elkins, T., Ganetzky, B., & Wu, C. F. (1986). A Drosophila mutation that eliminates a calcium-dependent potassium current. Proc Natl Acad Sci U S A, 83, 8415–8419.
  • Engel, J. E., & Wu, C. F. (1998). Genetic dissection of functional contributions of specific potassium channel subunits in habituation of an escape circuit in Drosophila. J Neurosci, 18, 2254–2267.
  • Engeland, B., Neu, A., Ludwig, J., Roeper, J., & Pongs, O. (1998). Cloning and functional expression of rat ether-a-go-go-like K+ channel genes. J Physiol, 513(Pt 3), 647–654.
  • Espinosa, F., McMahon, A., Chan, E., Wang, S., Ho, C. S., Heintz, N., . (2001). Alcohol hypersensitivity, increased locomotion, and spontaneous myoclonus in mice lacking the potassium channels Kv3.1 and Kv3.3. J Neurosci, 21, 6657–6665.
  • Fadool, D. A., Tucker, K., Perkins, R., Fasciani, G., Thompson, R. N., Parsons, A. D., . (2004). Kv1.3 channel gene-targeted deletion produces “Super-Smeller Mice” with altered glomeruli, interacting scaffolding proteins, and biophysics. Neuron, 41, 389–404.
  • Farias, L. M., Ocana, D. B., Diaz, L., Larrea, F., Avila-Chavez, E., Cadena, A., . (2004). Ether a go-go potassium channels as human cervical cancer markers. Cancer Res, 64, 6996–7001.
  • Feng, G., Deak, P., Chopra, M., & Hall, L. M. (1995). Cloning and functional analysis of TipE, a novel membrane protein that enhances Drosophila para sodium channel function. Cell, 82, 1001–1011.
  • Fergestad, T., Ganetzky, B., & Palladino, M. J. (2006). Neuropathology in Drosophila membrane excitability mutants. Genetics, 172, 1031–1042.
  • Fergestad, T., Sale, H., Bostwick, B., Schaffer, A., Ho, L., Robertson, G. A., . (2010). A Drosophila behavioral mutant, down and out (dao), is defective in an essential regulator of Erg potassium channels. Proc Natl Acad Sci U S A, 107, 5617–5621.
  • Franco, R., DeHaven, W. I., Sifre, M. I., Bortner, C. D., & Cidlowski, J. A. (2008). Glutathione depletion and disruption of intracellular ionic homeostasis regulate lymphoid cell apoptosis. J Biol Chem, 283, 36071–36087.
  • Frech, G. C., VanDongen, A. M., Schuster, G., Brown, A. M., & Joho, R. H. (1989). A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning. Nature, 340, 642–645.
  • Frolov, R. V., Berim, I. G., & Singh, S. (2008). Inhibition of delayed rectifier potassium channels and induction of arrhythmia: A novel effect of celecoxib and the mechanism underlying it. J Biol Chem, 283, 1518–1524.
  • Fulton, S., Thibault, D., Mendez, J. A., Lahaie, N., Tirotta, E., Borrelli, E., . (2011). Contribution of Kv1.2 voltage-gated potassium channel to D2 autoreceptor regulation of axonal dopamine overflow. J Biol Chem, 286, 9360–9372.
  • Gaborit, N., Le Bouter, S., Szuts, V., Varro, A., Escande, D., Nattel, S., . (2007). Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. J Physiol, 582(Pt 2), 675–693.
  • Gaborit, N., Wichter, T., Varro, A., Szuts, V., Lamirault, G., Eckardt, L., . (2009). Transcriptional profiling of ion channel genes in Brugada syndrome and other right ventricular arrhythmogenic diseases. Eur Heart J, 30, 487–496.
  • Ganetzky, B. (1986). Neurogenetic analysis of Drosophila mutations affecting sodium channels: Synergistic effects on viability and nerve conduction in double mutants involving tip-E. J Neurogenet, 3, 19–31.
  • Ganetzky, B. (2000). Genetic analysis of ion channel dysfunction in Drosophila. Kidney Int, 57, 766–771.
  • Ganetzky, B., & Wu, C. F. (1982). Drosophila mutants with opposing effects on nerve excitability: Genetic and spatial interactions in repetitive firing. J Neurophysiol, 47, 501–514.
  • Ganetzky, B., & Wu, C. F. (1983). Neurogenetic analysis of potassium currents in Drosophila: Synergistic effects on neuromuscular transmission in double mutants. J Neurogenet, 1, 17–28.
  • Gilhar, A., Bergman, R., Assay, B., Ullmann, Y., & Etzioni, A. (2011). The beneficial effect of blocking Kv1.3 in the psoriasiform SCID mouse model. J Invest Dermatol, 131, 118–124.
  • Giudicessi, J. R., Ye, D., Tester, D. J., Crotti, L., Mugione, A., Nesterenko, V. V., . (2011). Transient outward current (I(to)) gain-of-function mutations in the KCND3-encoded Kv4.3 potassium channel and Brugada syndrome. Heart Rhythm, 8, 1024–1032.
  • Gladstone, M., & Su, T. T. (2011). Chemical genetics and drug screening in Drosophila cancer models. J Genet Genomics, 38, 497–504.
  • Gong, Q., Zhang, L., Vincent, G. M., Horne, B. D., & Zhou, Z. (2007). Nonsense mutations in hERG cause a decrease in mutant mRNA transcripts by nonsense-mediated mRNA decay in human long-QT syndrome. Circulation, 116, 17–24.
  • Gorman, A. L., & Thomas, M. V. (1980). Potassium conductance and internal calcium accumulation in a molluscan neurone. J Physiol, 308, 287–313.
  • Gossen, M., & Bujard, H. (1992). Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A, 89, 5547–5551.
  • Griffith, L. C., Wang, J., Zhong, Y., Wu, C. F., & Greenspan, R. J. (1994). Calcium/calmodulin-dependent protein kinase II and potassium channel subunit eag similarly affect plasticity in Drosophila. Proc Natl Acad Sci U S A, 91, 10044–10048.
  • Grissmer, S., Dethlefs, B., Wasmuth, J. J., Goldin, A. L., Gutman, G. A., Cahalan, M. D., . (1990). Expression and chromosomal localization of a lymphocyte K+ channel gene. Proc Natl Acad Sci U S A, 87, 9411–9415.
  • Guan, Z., Buhl, L. K., Quinn, W. G., & Littleton, J. T. (2011). Altered gene regulation and synaptic morphology in Drosophila learning and memory mutants. Learn Mem, 18, 191–206.
  • Gutman, G. A., Chandy, K. G., Grissmer, S., Lazdunski, M., McKinnon, D., Pardo, L. A., . (2005). International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev, 57, 473–508.
  • Guy, H. R., Durell, S. R., Warmke, J., Drysdale, R., & Ganetzky, B. (1991). Similarities in amino acid sequences of Drosophila eag and cyclic nucleotide-gated channels. Science, 254, 730.
  • Hall, J. C. (1994). The mating of a fly. Science, 264, 1702–1714.
  • Hancox, J. C., McPate, M. J., El Harchi, A., & Zhang, Y. H. (2008). The hERG potassium channel and hERG screening for drug-induced torsades de pointes. Pharmacol Ther, 119, 118–132.
  • Haugland, F. N., & Wu, C. F. (1990). A voltage-clamp analysis of gene-dosage effects of the Shaker locus on larval muscle potassium currents in Drosophila. J Neurosci, 10, 1357–1371.
  • Hegde, P., Gu, G. G., Chen, D., Free, S. J., & Singh, S. (1999). Mutational analysis of the Shab-encoded delayed rectifier K(+) channels in Drosophila. J Biol Chem, 274, 22109–22113.
  • Hegle, A. P., Marble, D. D., & Wilson, G. F. (2006). A voltage-driven switch for ion-independent signaling by ether-a-go-go K+ channels. Proc Natl Acad Sci U S A, 103, 2886–2891.
  • Heinemann, S. H., Rettig, J., Graack, H. R., & Pongs, O. (1996). Functional characterization of Kv channel beta-subunits from rat brain. J Physiol, 493(Pt 3), 625–633.
  • Heyer, C. B., & Lux, H. D. (1976). Control of the delayed outward potassium currents in bursting pace-maker neurones of the snail, Helix pomatia. J Physiol, 262, 349–382.
  • Ho, C. S., Grange, R. W., & Joho, R. H. (1997). Pleiotropic effects of a disrupted K+ channel gene: Reduced body weight, impaired motor skill and muscle contraction, but no seizures. Proc Natl Acad Sci U S A, 94, 1533–1538.
  • Hodge, J. J. (2009). Ion channels to inactivate neurons in Drosophila. Front Mol Neurosci, 2, 13.
  • Hodge, J. J., Choi, J. C., O’Kane, C. J., & Griffith, L. C. (2005). Shaw potassium channel genes in Drosophila. J Neurobiol, 63, 235–254.
  • Hodge, J. J., & Stanewsky, R. (2008). Function of the Shaw potassium channel within the Drosophila circadian clock. PLoS ONE, 3, e2274.
  • Homyk, T., & Sheppard, D. E. (1977). Behavioral mutants of Drosophila melanogaster. I. Isolation and mapping of mutations which decrease flight ability. Genetics, 87, 95–104.
  • Huffaker, S. J., Chen, J., Nicodemus, K. K., Sambataro, F., Yang, F., Mattay, V., . (2009). A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia. Nat Med, 15, 509–518.
  • Hughes, T. T., Allen, A. L., Bardin, J. E., Christian, M. N., Daimon, K., Dozier, K. D., . (2012). Drosophila as a genetic model for studying pathogenic human viruses. Virology, 423, 1–5.
  • Humphreys, J. M., Duyf, B., Joiner, M. L., Phillips, J. P., & Hilliker, A. J. (1996). Genetic analysis of oxygen defense mechanisms in Drosophila melanogaster and identification of a novel behavioural mutant with a Shaker phenotype. Genome, 39, 749–757.
  • Jan, Y. N., Jan, L. Y., & Dennis, M. J. (1977). Two mutations of synaptic transmission in Drosophila. Proc R Soc Lond B Biol Sci, 198, 87–108.
  • Jentsch, T. J. (2000). Neuronal KCNQ potassium channels: Physiology and role in disease. Nat Rev Neurosci, 1, 21–30.
  • Jia, X. X., Gorczyca, M., & Budnik, V. (1993). Ultrastructure of neuromuscular junctions in Drosophila: Comparison of wild type and mutants with increased excitability. J Neurobiol, 24, 1025–1044.
  • Jiao, S., Liu, Z., Ren, W. H., Ding, Y., Zhang, Y. Q., Zhang, Z. H., . (2007). cAMP/protein kinase A signalling pathway protects against neuronal apoptosis and is associated with modulation of Kv2.1 in cerebellar granule cells. J Neurochem, 100, 979–991.
  • Johnson, E., Ringo, J., Bray, N., & Dowse, H. (1998). Genetic and pharmacological identification of ion channels central to the Drosophila cardiac pacemaker. J Neurogenet, 12, 1–24.
  • Kaab, S., Dixon, J., Duc, J., Ashen, D., Nabauer, M., Beuckelmann, D. J., . (1998). Molecular basis of transient outward potassium current downregulation in human heart failure: A decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation, 98, 1383–1393.
  • Kalman, K., Nguyen, A., Tseng-Crank, J., Dukes, I. D., Chandy, G., Hustad, C. M., . (1998). Genomic organization, chromosomal localization, tissue distribution, and biophysical characterization of a novel mammalian Shaker-related voltage-gated potassium channel, Kv1.7. J Biol Chem, 273, 5851–5857.
  • Kamb, A., Iverson, L. E., & Tanouye, M. A. (1987). Molecular characterization of Shaker, a Drosophila gene that encodes a potassium channel. Cell, 50, 405–413.
  • Kaplan, W. D., & Trout, W. E., 3rd. (1969). The behavior of four neurological mutants of Drosophila. Genetics, 61, 399–409.
  • Kasbekar, D. P., Nelson, J. C., & Hall, L. M. (1987). Enhancer of seizure: A new genetic locus in Drosophila melanogaster defined by interactions with temperature-sensitive paralytic mutations. Genetics, 116, 423–431.
  • Kass, R. S. (2005). The channelopathies: Novel insights into molecular and genetic mechanisms of human disease. J Clin Invest, 115, 1986–1989.
  • Kernan, M. J., Kuroda, M. I., Kreber, R., Baker, B. S., & Ganetzky, B. (1991). napts, a mutation affecting sodium channel activity in Drosophila, is an allele of mle, a regulator of X chromosome transcription. Cell, 66, 949–959.
  • Kharkovets, T., Hardelin, J. P., Safieddine, S., Schweizer, M., El-Amraoui, A., Petit, C., . (2000). KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc Natl Acad Sci U S A, 97, 4333–4338.
  • Kubisch, C., Schroeder, B. C., Friedrich, T., Lutjohann, B., El-Amraoui, A., Marlin, S., . (1999). KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell, 96, 437–446.
  • Kulkarni, S. J., & Padhye, A. (1982). Temperature-sensitive paralytic mutations on the second and third chromosomes of Drosophila melanogaster. Genet Res, 40, 191–199.
  • Kuroda, M. I., Kernan, M. J., Kreber, R., Ganetzky, B., & Baker, B. S. (1991). The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila. Cell, 66, 935–947.
  • Latorre, R., Vergara, C., & Hidalgo, C. (1982). Reconstitution in planar lipid bilayers of a Ca2+-dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle. Proc Natl Acad Sci U S A, 79, 805–809.
  • Laughon, A., & Gesteland, R. F. (1984). Primary structure of the Saccharomyces cerevisiae GAL4 gene. Mol Cell Biol, 4, 260–267.
  • Lee, H., Wang, H., Jen, J. C., Sabatti, C., Baloh, R. W., & Nelson, S. F. (2004). A novel mutation in KCNA1 causes episodic ataxia without myokymia. Hum Mutat, 24, 536.
  • Lee, J., & Wu, C. F. (2010). Orchestration of stepwise synaptic growth by K+ and Ca2+ channels in Drosophila. J Neurosci, 30, 15821–15833.
  • Liu, W., Gnanasambandam, R., Benjamin, J., Kaur, G., Getman, P. B., Siegel, A. J., . (2007). Mutations in cytochrome c oxidase subunit VIa cause neurodegeneration and motor dysfunction in Drosophila. Genetics, 176, 937–946.
  • Lupoglazoff, J. M., Denjoy, I., Villain, E., Fressart, V., Simon, F., Bozio, A., . (2004). Long QT syndrome in neonates: Conduction disorders associated with HERG mutations and sinus bradycardia with KCNQ1 mutations. J Am Coll Cardiol, 43, 826–830.
  • Malin, S. A., & Nerbonne, J. M. (2002). Delayed rectifier K+ currents, IK, are encoded by Kv2 alpha-subunits and regulate tonic firing in mammalian sympathetic neurons. J Neurosci, 22, 10094–10105.
  • Marty, A. (1981). Ca-dependent K channels with large unitary conductance in chromaffin cell membranes. Nature, 291, 497–500.
  • Massengill, J. L., Smith, M. A., Son, D. I., & O’Dowd, D. K. (1997). Differential expression of K4-AP currents and Kv3.1 potassium channel transcripts in cortical neurons that develop distinct firing phenotypes. J Neurosci, 17, 3136–3147.
  • Matthews, K. A., Kaufman, T. C., & Gelbart, W. M. (2005). Research resources for Drosophila: The expanding universe. Nat Rev Genet, 6, 179–193.
  • McGuire, S. E., Le, P. T., Osborn, A. J., Matsumoto, K., & Davis, R. L. (2003). Spatiotemporal rescue of memory dysfunction in Drosophila. Science, 302, 1765–1768.
  • McGuire, S. E., Roman, G., & Davis, R. L. (2004). Gene expression systems in Drosophila: A synthesis of time and space. Trends Genet, 20, 384–391.
  • Menendez, S. T., Villaronga, M. A., Rodrigo, J. P., Alvarez-Teijeiro, S., Garcia-Carracedo, D., Urdinguio, R. G., . (2012). Frequent aberrant expression of the human ether a go-go (hEAG1) potassium channel in head and neck cancer: Pathobiological mechanisms and clinical implications. J Mol Med (Berl), 90, 1173–1184.
  • Meyer, R., & Heinemann, S. H. (1998). Characterization of an eag-like potassium channel in human neuroblastoma cells. J Physiol, 508(Pt 1), 49–56.
  • Misonou, H., Mohapatra, D. P., Park, E. W., Leung, V., Zhen, D., Misonou, K., . (2004). Regulation of ion channel localization and phosphorylation by neuronal activity. Nat Neurosci, 7, 711–718.
  • Misonou, H., Mohapatra, D. P., & Trimmer, J. S. (2005). Kv2.1: A voltage-gated K+ channel critical to dynamic control of neuronal excitability. Neurotoxicology, 26, 743–752.
  • Murakoshi, H., & Trimmer, J. S. (1999). Identification of the Kv2.1 K+ channel as a major component of the delayed rectifier K+ current in rat hippocampal neurons. J Neurosci, 19, 1728–1735.
  • Nicholson, L., Singh, G. K., Osterwalder, T., Roman, G. W., Davis, R. L., & Keshishian, H. (2008). Spatial and temporal control of gene expression in Drosophila using the inducible GeneSwitch GAL4 system. I. Screen for larval nervous system drivers. Genetics, 178, 215–234.
  • Niven, J. E., Vahasoyrinki, M., Kauranen, M., Hardie, R. C., Juusola, M., & Weckstrom, M. (2003). The contribution of Shaker K+ channels to the information capacity of Drosophila photoreceptors. Nature, 421, 630–634.
  • Niwa, N., & Nerbonne, J. M. (2010). Molecular determinants of cardiac transient outward potassium current (I(to)) expression and regulation. J Mol Cell Cardiol, 48, 12–25.
  • Ocorr, K., Reeves, N. L., Wessells, R. J., Fink, M., Chen, H. S., Akasaka, T., . (2007). KCNQ potassium channel mutations cause cardiac arrhythmias in Drosophila that mimic the effects of aging. Proc Natl Acad Sci U S A, 104, 3943–3948.
  • Ophoff, R. A., Terwindt, G. M., Vergouwe, M. N., van Eijk, R., Oefner, P. J., Hoffman, S. M., . (1996). Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell, 87, 543–552.
  • Ordog, B., Brutyo, E., Puskas, L. G., Papp, J. G., Varro, A., Szabad, J., . (2006). Gene expression profiling of human cardiac potassium and sodium channels. Int J Cardiol, 111, 386–393.
  • Orgad, S., Llamazares, S., Dudai, Y., & Ferrus, A. (1989). The Drosophila mutant tetanic interacts with a gene complex including the structural locus of K+ channels and shows altered dephosphorylation and learning. Eur J Neurosci, 1, 367–373.
  • Pal, S., Hartnett, K. A., Nerbonne, J. M., Levitan, E. S., & Aizenman, E. (2003). Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. J Neurosci, 23, 4798–4802.
  • Pallanck, L., & Ganetzky, B. (1994). Cloning and characterization of human and mouse homologs of the Drosophila calcium-activated potassium channel gene, slowpoke. Hum Mol Genet, 3, 1239–1243.
  • Pallotta, B. S., Magleby, K. L., & Barrett, J. N. (1981). Single channel recordings of Ca2+-activated K+ currents in rat muscle cell culture. Nature, 293, 471–474.
  • Papazian, D. M., Schwarz, T. L., Tempel, B. L., Jan, Y. N., & Jan, L. Y. (1987). Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science, 237, 749–753.
  • Park, K. S., Mohapatra, D. P., Misonou, H., & Trimmer, J. S. (2006). Graded regulation of the Kv2.1 potassium channel by variable phosphorylation. Science, 313, 976–979.
  • Patel, A. J., Lazdunski, M., & Honore, E. (1997). Kv2.1/Kv9.3, a novel ATP-dependent delayed-rectifier K+ channel in oxygen-sensitive pulmonary artery myocytes. EMBO J, 16, 6615–6625.
  • Peng, I. F., & Wu, C. F. (2007). Differential contributions of Shaker and Shab K+ currents to neuronal firing patterns in Drosophila. J Neurophysiol, 97, 780–794.
  • Ping, Y., Waro, G., Licursi, A., Smith, S., Vo-Ba, D. A., & Tsunoda, S. (2011). Shal/K(v)4 channels are required for maintaining excitability during repetitive firing and normal locomotion in Drosophila. PLoS ONE, 6, e16043.
  • Pinto, L. H., & Klumpp, D. J. (1998). Localization of potassium channels in the retina. Prog Retin Eye Res, 17, 207–230.
  • Pongs, O., Kecskemethy, N., Muller, R., Krah-Jentgens, I., Baumann, A., Kiltz, H. H., . (1988). Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila. EMBO J, 7, 1087–1096.
  • Potter, C. J., Tasic, B., Russler, E. V., Liang, L., & Luo, L. (2010). The Q system: A repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell, 141, 536–548.
  • Puig, O., & Mattila, J. Understanding Forkhead box class O function: Lessons from Drosophila melanogaster. Antioxid Redox Signal, 14, 635–647.
  • Raschi, E., Vasina, V., Poluzzi, E., & De Ponti, F. (2008). The hERG K+ channel: Target and antitarget strategies in drug development. Pharmacol Res, 57, 181–195.
  • Ravens, U., & Wettwer, E. (2011). Ultra-rapid delayed rectifier channels: Molecular basis and therapeutic implications. Cardiovasc Res, 89, 776–785.
  • Redman, P. T., He, K., Hartnett, K. A., Jefferson, B. S., Hu, L., Rosenberg, P. A., . (2007). Apoptotic surge of potassium currents is mediated by p38 phosphorylation of Kv2.1. Proc Natl Acad Sci U S A, 104, 3568–3573.
  • Reenan, R. A., Hanrahan, C. J., & Ganetzky, B. (2000). The mle(napts) RNA helicase mutation in Drosophila results in a splicing catastrophe of the para Na+ channel transcript in a region of RNA editing. Neuron, 25, 139–149.
  • Refaat, M., Chemaly, E., Lebeche, D., Gwathmey, J. K., & Hajjar, R. J. (2008). Ventricular arrhythmias after left ventricular assist device implantation. Pacing Clin Electrophysiol, 31, 1246–1252.
  • Reiter, L. T., Potocki, L., Chien, S., Gribskov, M., & Bier, E. (2001). A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res, 11, 1114–1125.
  • Rettig, J., Heinemann, S. H., Wunder, F., Lorra, C., Parcej, D. N., Dolly, J. O., . (1994). Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit. Nature, 369, 289–294.
  • Rho, J. M., Szot, P., Tempel, B. L., & Schwartzkroin, P. A. (1999). Developmental seizure susceptibility of kv1.1 potassium channel knockout mice. Dev Neurosci, 21, 320–327.
  • Rivera, J. F., Ahmad, S., Quick, M. W., Liman, E. R., & Arnold, D. B. (2003). An evolutionarily conserved dileucine motif in Shal K+ channels mediates dendritic targeting. Nat Neurosci, 6, 243–250.
  • Roberds, S. L., & Tamkun, M. M. (1991). Cloning and tissue-specific expression of five voltage-gated potassium channel cDNAs expressed in rat heart. Proc Natl Acad Sci U S A, 88, 1798–1802.
  • Rogero, O., Hammerle, B., & Tejedor, F. J. (1997). Diverse expression and distribution of Shaker potassium channels during the development of the Drosophila nervous system. J Neurosci, 17, 5108–5118.
  • Ruttiger, L., Sausbier, M., Zimmermann, U., Winter, H., Braig, C., Engel, J., . (2004). Deletion of the Ca2+-activated potassium (BK) alpha-subunit but not the BKbeta1-subunit leads to progressive hearing loss. Proc Natl Acad Sci U S A, 101, 12922–12927.
  • Ryglewski, S., & Duch, C. (2009). Shaker and Shal mediate transient calcium-independent potassium current in a Drosophila flight motoneuron. J Neurophysiol, 102, 3673–3688.
  • Salkoff, L., Butler, A., Ferreira, G., Santi, C., & Wei, A. (2006). High-conductance potassium channels of the SLO family. Nat Rev Neurosci, 7, 921–931.
  • Salkoff, L., & Wyman, R. (1981a). Genetic modification of potassium channels in Drosophila Shaker mutants. Nature, 293, 228–230.
  • Salkoff, L., & Wyman, R. (1981b). Outward currents in developing Drosophila flight muscle. Science, 212, 461–463.
  • Sanguinetti, M. C., Curran, M. E., Zou, A., Shen, J., Spector, P. S., Atkinson, D. L., . (1996). Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature, 384, 80–83.
  • Sanguinetti, M. C., Jiang, C., Curran, M. E., & Keating, M. T. (1995). A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell, 81, 299–307.
  • Sanyal, S., Consoulas, C., Kuromi, H., Basole, A., Mukai, L., Kidokoro, Y., . (2005). Analysis of conditional paralytic mutants in Drosophila sarco-endoplasmic reticulum calcium ATPase reveals novel mechanisms for regulating membrane excitability. Genetics, 169, 737–750.
  • Sausbier, M., Arntz, C., Bucurenciu, I., Zhao, H., Zhou, X. B., Sausbier, U., . (2005). Elevated blood pressure linked to primary hyperaldosteronism and impaired vasodilation in BK channel-deficient mice. Circulation, 112, 60–68.
  • Sausbier, M., Hu, H., Arntz, C., Feil, S., Kamm, S., Adelsberger, H., . (2004). Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+-activated K+ channel deficiency. Proc Natl Acad Sci U S A, 101, 9474–9478.
  • Schopperle, W. M., Holmqvist, M. H., Zhou, Y., Wang, J., Wang, Z., Griffith, L. C., . (1998). Slob, a novel protein that interacts with the Slowpoke calcium-dependent potassium channel. Neuron, 20, 565–573.
  • Schreiber, M., & Salkoff, L. (1997). A novel calcium-sensing domain in the BK channel. Biophys J, 73, 1355–1363.
  • Schroeder, B. C., Kubisch, C., Stein, V., & Jentsch, T. J. (1998). Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature, 396, 687–690.
  • Schuster, C. M., Davis, G. W., Fetter, R. D., & Goodman, C. S. (1996). Genetic dissection of structural and functional components of synaptic plasticity. II. Fasciclin II controls presynaptic structural plasticity. Neuron, 17, 655–667.
  • Sheng, M., Tsaur, M. L., Jan, Y. N., & Jan, L. Y. (1992). Subcellular segregation of two A-type K+ channel proteins in rat central neurons. Neuron, 9, 271–284.
  • Singh, A., & Singh, S. (1999). Unmasking of a novel potassium current in Drosophila by a mutation and drugs. J Neurosci, 19, 6838–6843.
  • Singh, B., Ogiwara, I., Kaneda, M., Tokonami, N., Mazaki, E., Baba, K., . (2006). A Kv4.2 truncation mutation in a patient with temporal lobe epilepsy. Neurobiol Dis, 24, 245–253.
  • Song, J., & Tanouye, M. A. (2008). From bench to drug: Human seizure modeling using Drosophila. Prog Neurobiol, 84, 182–191.
  • Srinivasan, S., Lance, K., & Levine, R. B. (2012). Contribution of EAG to excitability and potassium currents in Drosophila larval motoneurons. J Neurophysiol, 107, 2660–2671.
  • Storey, N. M., Gomez-Angelats, M., Bortner, C. D., Armstrong, D. L., & Cidlowski, J. A. (2003). Stimulation of Kv1.3 potassium channels by death receptors during apoptosis in Jurkat T lymphocytes. J Biol Chem, 278, 33319–33326.
  • Sun, X. X., Bostrom, S. L., & Griffith, L. C. (2009). Alternative splicing of the eag potassium channel gene in Drosophila generates a novel signal transduction scaffolding protein. Mol Cell Neurosci, 40, 338–343.
  • Swanson, R., Marshall, J., Smith, J. S., Williams, J. B., Boyle, M. B., Folander, K., . (1990). Cloning and expression of cDNA and genomic clones encoding three delayed rectifier potassium channels in rat brain. Neuron, 4, 929–939.
  • Tamsett, T. J., Picchione, K. E., & Bhattacharjee, A. (2009). NAD+ activates KNa channels in dorsal root ganglion neurons. J Neurosci, 29, 5127–5134.
  • Tanouye, M. A., & Ferrus, A. (1985). Action potentials in normal and Shaker mutant Drosophila. J Neurogenet, 2, 253–271.
  • Tanouye, M. A., Ferrus, A., & Fujita, S. C. (1981). Abnormal action potentials associated with the Shaker complex locus of Drosophila. Proc Natl Acad Sci U S A, 78, 6548–6552.
  • Tempel, B. L., Jan, Y. N., & Jan, L. Y. (1988). Cloning of a probable potassium channel gene from mouse brain. Nature, 332, 837–839.
  • Tempel, B. L., Papazian, D. M., Schwarz, T. L., Jan, Y. N., & Jan, L. Y. (1987). Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science, 237, 770–775.
  • Tickoo, S., & Russell, S. (2002). Drosophila melanogaster as a model system for drug discovery and pathway screening. Curr Opin Pharmacol, 2, 555–560.
  • Titus, S. A., Warmke, J. W., & Ganetzky, B. (1997). The Drosophila erg K+ channel polypeptide is encoded by the seizure locus. J Neurosci, 17, 875–881.
  • Toldi, G., Vasarhelyi, B., Kaposi, A., Meszaros, G., Panczel, P., Hosszufalusi, N., . (2010). Lymphocyte activation in type 1 diabetes mellitus: The increased significance of Kv1.3 potassium channels. Immunol Lett, 133, 35–41.
  • Trudeau, M. C., Warmke, J. W., Ganetzky, B., & Robertson, G. A. (1995). HERG, a human inward rectifier in the voltage-gated potassium channel family. Science, 269, 92–95.
  • Tschritter, O., Machicao, F., Stefan, N., Schafer, S., Weigert, C., Staiger, H., . (2006). A new variant in the human Kv1.3 gene is associated with low insulin sensitivity and impaired glucose tolerance. J Clin Endocrinol Metab, 91, 654–658.
  • Tsunoda, S., & Salkoff, L. (1995a). Genetic analysis of Drosophila neurons: Shal, Shaw, and Shab encode most embryonic potassium currents. J Neurosci, 15(3 Pt 1), 1741–1754.
  • Tsunoda, S., & Salkoff, L. (1995b). The major delayed rectifier in both Drosophila neurons and muscle is encoded by Shab. J Neurosci, 15(7 Pt 2), 5209–5221.
  • Tzingounis, A. V., Heidenreich, M., Kharkovets, T., Spitzmaul, G., Jensen, H. S., Nicoll, R. A., . (2010). The KCNQ5 potassium channel mediates a component of the afterhyperpolarization current in mouse hippocampus. Proc Natl Acad Sci U S A, 107, 10232–10237.
  • Ueda, A., & Wu, C. F. (2006). Distinct frequency-dependent regulation of nerve terminal excitability and synaptic transmission by IA and IK potassium channels revealed by Drosophila Shaker and Shab mutations. J Neurosci, 26, 6238–6248.
  • Vahasoyrinki, M., Niven, J. E., Hardie, R. C., Weckstrom, M., & Juusola, M. (2006). Robustness of neural coding in Drosophila photoreceptors in the absence of slow delayed rectifier K+ channels. J Neurosci, 26, 2652–2660.
  • Van Wagoner, D. R., Pond, A. L., McCarthy, P. M., Trimmer, J. S., & Nerbonne, J. M. (1997). Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ Res, 80, 772–781.
  • Venken, K. J., & Bellen, H. J. (2005). Emerging technologies for gene manipulation in Drosophila melanogaster. Nat Rev Genet, 6, 167–178.
  • Wang, J. W., Humphreys, J. M., Phillips, J. P., Hilliker, A. J., & Wu, C. F. (2000). A novel leg-shaking Drosophila mutant defective in a voltage-gated K(+)current and hypersensitive to reactive oxygen species. J Neurosci, 20, 5958–5964.
  • Wang, J. W., Soll, D. R., & Wu, C. F. (2002). Morphometric description of the wandering behavior in Drosophila larvae: A phenotypic analysis of K+ channel mutants. J Neurogenet, 16, 45–63.
  • Wang, Q., Curran, M. E., Splawski, I., Burn, T. C., Millholland, J. M., VanRaay, T. J., . (1996). Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet, 12, 17–23.
  • Wang, X. J., Reynolds, E. R., Deak, P., & Hall, L. M. (1997). The seizure locus encodes the Drosophila homolog of the HERG potassium channel. J Neurosci, 17, 882–890.
  • Wareing, M., Bai, X., Seghier, F., Turner, C. M., Greenwood, S. L., Baker, P. N., . (2006). Expression and function of potassium channels in the human placental vasculature. Am J Physiol Regul Integr Comp Physiol, 291, R437–R446.
  • Warmke, J., Drysdale, R., & Ganetzky, B. (1991). A distinct potassium channel polypeptide encoded by the Drosophila eag locus. Science, 252, 1560–1562.
  • Warmke, J. W., & Ganetzky, B. (1994). A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci U S A, 91, 3438–3442.
  • Waters, M. F., Minassian, N. A., Stevanin, G., Figueroa, K. P., Bannister, J. P., Nolte, D., . (2006). Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nat Genet, 38, 447–451.
  • Wei, A. D., Gutman, G. A., Aldrich, R., Chandy, K. G., Grissmer, S., & Wulff, H. (2005). International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol Rev, 57, 463–472.
  • Wen, H., Weiger, T. M., Ferguson, T. S., Shahidullah, M., Scott, S. S., & Levitan, I. B. (2005). A Drosophila KCNQ channel essential for early embryonic development. J Neurosci, 25, 10147–10156.
  • Wolf, M. J., & Rockman, H. A. (2011). Drosophila, genetic screens, and cardiac function. Circ Res, 109, 794–806.
  • Wu, C. F., & Ganetzky, B. (1980). Genetic alteration of nerve membrane excitability in temperature-sensitive paralytic mutants of Drosophila melanogaster. Nature, 286, 814–816.
  • Wu, C. F., Ganetzky, B., Haugland, F. N., & Liu, A. X. (1983). Potassium currents in Drosophila: Different components affected by mutations of two genes. Science, 220, 1076–1078.
  • Wu, C. F., Ganetzky, B., Jan, L. Y., Jan, Y. N., & Benzer, S. (1978). A Drosophila mutant with a temperature-sensitive block in nerve conduction. Proc Natl Acad Sci U S A, 75, 4047–4051.
  • Wu, C. F., & Haugland, F. N. (1985). Voltage clamp analysis of membrane currents in larval muscle fibers of Drosophila: Alteration of potassium currents in Shaker mutants. J Neurosci, 5, 2626–2640.
  • Wulff, H., Calabresi, P. A., Allie, R., Yun, S., Pennington, M., Beeton, C., . (2003). The voltage-gated Kv1.3 K(+) channel in effector memory T cells as new target for MS. J Clin Invest, 111, 1703–1713.
  • Yan, L., Figueroa, D. J., Austin, C. P., Liu, Y., Bugianesi, R. M., Slaughter, R. S., . (2004). Expression of voltage-gated potassium channels in human and rhesus pancreatic islets. Diabetes, 53, 597–607.
  • Yang, W. P., Levesque, P. C., Little, W. A., Conder, M. L., Shalaby, F. Y., & Blanar, M. A. (1997). KvLQT1, a voltage-gated potassium channel responsible for human cardiac arrhythmias. Proc Natl Acad Sci U S A, 94, 4017–4021.
  • Yu, D., Feng, C., & Guo, A. (1999). Altered outward K(+) currents in Drosophila larval neurons of memory mutants rutabaga and amnesiac. J Neurobiol, 40, 158–170.
  • Zhong, Y., Budnik, V., & Wu, C. F. (1992). Synaptic plasticity in Drosophila memory and hyperexcitable mutants: Role of cAMP cascade. J Neurosci, 12, 644–651.
  • Zhong, Y., & Wu, C. F. (1991). Alteration of four identified K+ currents in Drosophila muscle by mutations in eag. Science, 252, 1562–1564.
  • Zhong, Y., & Wu, C. F. (1993). Modulation of different K+ currents in Drosophila: A hypothetical role for the Eag subunit in multimeric K+ channels. J Neurosci, 13, 4669–4679.
  • Zhou, Y., Fei, H., & Levitan, I. B. (2003). An interaction domain in Slob necessary for its binding to the slowpoke calcium-dependent potassium channel. Neuropharmacology, 45, 714–719.
  • Zhuchenko, O., Bailey, J., Bonnen, P., Ashizawa, T., Stockton, D. W., Amos, C., . (1997). Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A- voltage-dependent calcium channel. Nat Genet, 15, 62–69.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.