163
Views
12
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Intussusceptive-like angiogenesis in human fetal lung xenografts: Link with bronchopulmonary dysplasia-associated microvascular dysangiogenesis?

, , , , , , & show all
Pages 477-488 | Received 03 Apr 2015, Accepted 03 Aug 2015, Published online: 23 Oct 2015

REFERENCES

  • Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, Hale EC, Newman NS, Schibler K, Carlo WA, Kennedy KA, Poindexter BB, Finer NN, Ehrenkranz RA, Duara S, Sanchez PJ, O'Shea TM, Goldberg RN, Van Meurs KP, Faix RG, Phelps DL, Frantz ID, 3rd, Watterberg KL, Saha S, Das A, Higgins RD: Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics. 2010;126:443–456.
  • Costeloe KL, Hennessy EM, Haider S, Stacey F, Marlow N, Draper ES: Short term outcomes after extreme preterm birth in England: comparison of two birth cohorts in 1995 and 2006 (the EPICure studies). BMJ. 2012;345:e7976.
  • Landry JS, Chan T, Lands L, Menzies D: Long-term impact of bronchopulmonary dysplasia on pulmonary function. Canadian Respirat J. 2011;18:265–270.
  • Vom Hove M, Prenzel F, Uhlig HH, Robel-Tillig E: Pulmonary outcome in former preterm, very low birth weight children with bronchopulmonary dysplasia: a case-control follow-up at school age. J Pediatr. 2014;164:40–45 e44.
  • Husain AN, Siddiqui NH, Stocker JT: Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol. 1998;29:710–717.
  • De Paepe ME, Mao Q, Powell J, Rubin SE, DeKoninck P, Appel N, Dixon M, Gundogan F: Growth of pulmonary microvasculature in ventilated preterm infants. Am J Respir Crit Care Med. 2006;173:204–211.
  • Coalson JJ: Pathology of chronic lung disease in early infancy. In Chronic lung disease in early infancy: Bland RD, Coalson JJ, eds. New York: M. Dekker; 2000:85–124.
  • Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM: Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;164:1971–1980.
  • Abman SH: The dysmorphic pulmonary circulation in bronchopulmonary dysplasia: a growing story. Am J Respir Crit Care Med. 2008;178:114–115.
  • De Paepe ME, Greco D, Mao Q: Angiogenesis-related gene expression profiling in ventilated preterm human lungs. Exp Lung Res. 2010;36:399–410.
  • Maniscalco WM, Watkins RH, Pryhuber GS, Bhatt A, Shea C, Huyck H: Angiogenic factors and alveolar vasculature: development and alterations by injury in very premature baboons. Am J Physiol Lung Cell Mol Physiol. 2002;282:L811–L823.
  • Abman SH: Bronchopulmonary dysplasia: “a vascular hypothesis”. Am J Respir Crit Care Med. 2001;164:1755–1756.
  • Le Cras TD, Markham NE, Tuder RM, Voelkel NF, Abman SH: Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure. Am J Physiol Lung Cell Mol Physiol. 2002;283:L555–L562.
  • D'Angio CT, Ryan RM: Animal models of bronchopulmonary dysplasia. Iii: the preterm and term rabbit models. Am J Physiol Lung Cell Mol Physiol. 2014; 307:L959–L969.
  • Berger J, Bhandari V: Animal models of bronchopulmonary dysplasia. I: the term mouse models, Am J Physiol Lung Cell Mol Physiol. 2014; 307:L936–L947.
  • O'Reilly M, Thebaud B: Animal models of bronchopulmonary dysplasia II: the term rat models. Am J Physiol Lung Cell Mol Physiol. 2014; 307:L948–L958.
  • Yoder BA, Coalson JJ: Animal models of bronchopulmonary dysplasia. V: The preterm baboon models. Am J Physiol Lung Cell Mol Physiol. 2014; 307:L970–L977.
  • De Paepe ME, Gundavarapu S, Tantravahi U, Pepperell JR, Haley SA, Luks FI, Mao Q: Fas-ligand-induced apoptosis of respiratory epithelial cells causes disruption of postcanalicular alveolar development. Am J Pathol. 2008;173: 42–56.
  • Liu L, Mao Q, Chu S, Mounayar M, Abdi R, Fodor W, Padbury JF, De Paepe ME: Intranasal versus intraperitoneal delivery of human umbilical cord tissue-derived cultured mesenchymal stromal cells in a murine model of neonatal lung injury. Am J Pathol. 2014;184:3344–3358.
  • De Paepe ME, Chu S, Hall S, Heger NE, Thanos C, Mao Q: The human fetal lung xenograft: validation as model of microvascular remodeling in the postglandular lung. Pediatr Pulmonol. 2012;47:1192–1203.
  • De Paepe ME, Chu S, Heger N, Hall S, Mao Q: Resilience of the human fetal lung following stillbirth: potential relevance for pulmonary regenerative medicine. Exp Lung Res. 2012;38: 43–54.
  • Genest DR, Singer DB: Estimating the time of death in stillborn fetuses: III. External fetal examination; a study of 86 stillborns. Obstet Gynecol. 1992;80:593–600.
  • Potter C, Harris AL: Hypoxia inducible carbonic anhydrase IX, marker of tumour hypoxia, survival pathway and therapy target. Cell Cycle. 2004;3:164–167.
  • De Paepe ME: Lung growth and development. In Thurlbeck's pathology of the lung (pp. 39–84): Churg AM, Myers JL, Tazelaar HD, Wright JL, eds. New York, Thieme Medical Publishers; 2005.
  • Caduff JH, Fischer LC, Burri PH: Scanning electron microscope study of the developing microvasculature in the postnatal rat lung. Anat Rec. 1986;216:154–164.
  • Djonov V, Baum O, Burri PH: Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res. 2003;314:107–117.
  • Burri PH, Hlushchuk R, Djonov V: Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn. 2004;231:474–488.
  • De Spiegelaere W, Casteleyn C, Van den Broeck W, Plendl J, Bahramsoltani M, Simoens P, Djonov V, Cornillie P: Intussusceptive angiogenesis: a biologically relevant form of angiogenesis. J Vasc Res. 2012;49:390–404.
  • Konerding MA, Gibney BC, Houdek JP, Chamoto K, Ackermann M, Lee GS, Lin M, Tsuda A, Mentzer SJ: Spatial dependence of alveolar angiogenesis in post-pneumonectomy lung growth. Angiogenesis. 2012;15:23–32.
  • Egginton S, Zhou AL, Brown MD, Hudlicka O: Unorthodox angiogenesis in skeletal muscle. Cardiovasc Res. 2001;49:634–646.
  • Ribatti D, Djonov V: Intussusceptive microvascular growth in tumors. Cancer Lett. 2012;316:126–131.
  • Makanya AN, Hlushchuk R, Djonov VG: Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis. 2009;12:113–123.
  • Taylor AC, Seltz LM, Yates PA, Peirce SM: Chronic whole-body hypoxia induces intussusceptive angiogenesis and microvascular remodeling in the mouse retina. Microvasc Res. 2010;79:93–101.
  • Dome B, Hendrix MJ, Paku S, Tovari J, Timar J: Alternative vascularization mechanisms in cancer: Pathology and therapeutic implications. Am J Pathol. 2007;170:1–15.
  • Patan S, Munn LL, Tanda S, Roberge S, Jain RK, Jones RC: Vascular morphogenesis and remodeling in a model of tissue repair: blood vessel formation and growth in the ovarian pedicle after ovariectomy. Circ Res. 2001;89:723–731.
  • Morimoto-Tomita M, Uchimura K, Bistrup A, Lum DH, Egeblad M, Boudreau N, Werb Z, Rosen SD: Sulf-2, a proangiogenic heparan sulfate endosulfatase, is upregulated in breast cancer. Neoplasia. 2005;7:1001–1010.
  • Cho HJ, Baek KE, Park SM, Kim IK, Choi YL, Nam IK, Hwang EM, Park JY, Han JY, Kang SS, Kim DC, Lee WS, Lee MN, Oh GT, Kim JW, Lee CW, Yoo J: RhoGDI2 expression is associated with tumor growth and malignant progression of gastric cancer. Clin Cancer Res. 2009;15: 2612–2619.
  • Loboda A, Jazwa A, Grochot-Przeczek A, Rutkowski AJ, Cisowski J, Agarwal A, Jozkowicz A, Dulak J: Heme oxygenase-1 and the vascular bed: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2008;10: 1767–1812.
  • Torry DS, Mukherjea D, Arroyo J, Torry RJ: Expression and function of placenta growth factor: implications for abnormal placentation. J Soc Gynecol Invest. 2003;10:178–188.
  • Gao J, Zhao R, Xue Y, Niu Z, Cui K, Yu F, Zhang B, Li S: Role of enolase-1 in response to hypoxia in breast cancer: exploring the mechanisms of action. Oncol Rep. 2013;29:1322–1332.
  • Chao W, D'Amore PA: IGF2: epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev. 2008;19:111–120.
  • Jackson DG, Prevo R, Clasper S, Banerji S: LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends Immunol. 2001;22:317–321.
  • Kim JH, Park SW, Yu YS, Kim KW: Hypoxia-induced insulin-like growth factor II contributes to retinal vascularization in ocular development. Biochimie. 2012;94:734–740.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.