142
Views
24
CrossRef citations to date
0
Altmetric
Research Article

Targeted delivery of antigens to the gut-associated lymphoid tissues: 2. Ex vivo evaluation of lectin-labelled albumin microspheres for targeted delivery of antigens to the M-cells of the Peyer's patches

, , , , & , PhD
Pages 325-336 | Received 27 Feb 2009, Accepted 06 Jul 2009, Published online: 08 Jan 2010

References

  • Ahsan F, Rivas IP, Khan MA, Torres Suarez AI. Targeting to macrophages: Role of physicochemical properties of particulate carriers-liposomes and microspheres—on the phagocytosis of microspheres. J Contr Rel 2002; 79: 29–40
  • Ahuja A, Khar RK, Ali J. Mucoadhesive drug delivery systems. Drug Dev Ind Pharm 1997; 23: 489–515
  • Araujo L, Sheppard M, Lobenberg R, Kreuter J. Uptake of PMMA nanoparticles from the gastrointestinal tract after oral administration to rats: Modification of the body distribution after suspension in surfactant solutions and in oil vehicles. Int J Pharm 1999; 176: 209–224
  • Beier R, Gebert A. Kinetics of particle uptake in the domes of Peyer's patches. Am J Physiol 1998; 275: G130–G137
  • Bramwell VW, Perrie Y. Particulate delivery systems for vaccines. Crit Rev Ther Drug Carrier Syst 2005; 22: 151–214
  • Clark AM, Jepson MA, Hirst BH. Exploiting M cells for drug and vaccine delivery. Adv Drug Deliver 2001; 50: 81–106
  • Conway MA, Madrigal-Estebas L, McClean S, Brayden DJ, Mills KHG. Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: Effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine 2001; 19: 1940–1950
  • Dembri A, Montisci MJ, Gantier JC, Chacun H, Ponchel G. Targeting of 3′-azido 3′-deoxythymidine (AZT)-loaded poly(isohexylcyanoacrylate) nanospheres to the gastrointestinal mucosa and associated lymphoid tissues. Pharm Res 2001; 18: 467–473
  • Desai MP, Labhasetwar V, Amidon GI, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: Effect of particle size. Pharm Res 1996; 13: 1838–1845
  • Eldridge JH, Staas JK, Meulbroek JA, McGhee JR, Tice TR, Gilley RM. Biodegradable microspheres as a vaccine delivery system. Molec Immunol 1991; 28: 287–294
  • Eyles J, Alpar O, Field WN, Lewis DA, Keswick M. The transfer of polystyrene microspheres from the gastrointestinal tract to the circulation after oral administration in the rat. J Pharm Pharmacol 1995; 47: 561–565
  • Florence AT. The oral absorption of micro- and nanoparticulates: Neither exceptional nor unusual. Pharm Res 1997; 14: 259–266
  • Florence AT, Hillery AM, Hussain N, Jani PU. Factors affecting the oral uptake and translocation of polystyrene nanoparticles: Histological and analytical evidence. J Drug Target 1995a; 3: 65–70
  • Florence AT, Hillery AM, Hussain N, Jani PU. Nanoparticles as carriers for oral peptide absorption: Studies on particle uptake and fate. J Contr Rel 1995b; 36: 39–46
  • Florence AT, Hussain N. Transcytosis of nanoparticle and dendrimer delivery systems: Evolving vistas. Adv Drug Deliv Rev 2001; 50: S69–S89
  • Foster N, Clark AM. Ulex europaeus l lectin targets microspheres to mouse Peyer's patch M-cells in vivo. Vaccine 1998; 16: 536–541
  • Galindo-Rodriguez SA, Puel F, Briancon S, Allemann E, Doelker E, Fessi H. Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eur J Pharm Sci 2005; 25: 357–367
  • Gebert A, Rothkötter HJ, Pabst R. M cells in Peyer's patches of the intestine. Int Revi Cytol 1996; 167: 91–159
  • Giannasca QJ, Giannasca KT, Leightner AM, Neutra MR. Human intestinal M cells display the Sialyl Lewis A antigen. Infect Immun 1999; 67: 946–953
  • Gullberg E, Leonard M, Karlson J. Expression of specific markers and particle transport in a new human intestinal M-cell model. Biochem Biophys Res Commun 2000; 279: 808–813
  • Haas J, Lehr CM. Developments in the area of bioadhesive drug delivery systems. Expert Opin 2002; 2: 287–298
  • Jani PU, Florence AT, McCarthy DE. Further histological evidence of the gastrointestinal absorption of polystyrene nanospheres in the rat. Int J Pharm 1992; 84: 245–252
  • Jani P, Halbert GW, Langridge J, Florence AT. The uptake and translocation of latex nanospheres and microspheres after oral administration to rats. J Pharm Pharmacol 1989; 41: 809–812
  • Jani P, Halbert GW, Langridge J, Florence AT. Nanoparticle uptake by the rat gastrointestinal mucosa: Quantitation and particle size dependency. J Pharm Pharmacol 1990; 42: 821–826
  • Kraehenbuhl JP, Neutra MR. Molecular and cellular basis of immune protection of the mucosal surfaces. Physiol Rev 1992; 72: 853–879
  • Lamprecht A, Schafer U, Lehr CM. Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm Res 2001; 18: 788–793
  • Leach WT, Simpson DT, Val TN, Yu Z, Lim KT, Park EJ, Williams RO, Johnston KP. Encapsulation of protein nanoparticles into uniform-sized microspheres formed in a spinning oil film. AAPS PharmSci Tech 2005; 6: 605–617
  • Lee JW, Park JH, Robinson JR. Bioadhesive based dosage forms: The next generation. J Pharm Sci 2000; 89: 850–866
  • LeFevre ME, Boccio AM, Joel DD. Intestinal uptake of fluorescent microspheres in young and aged mice. Proc Soc Exp Biol Med 1989; 190: 23–27
  • Mathiowitz E, Chickering D, Jacob JS, Santos C. Bioadhesive drug delivery systems. Encyclopedia of controlled drug delivery, E Mathiowitz. Wiley, New York 1999; 1: 9–44
  • McClean S, Prosser E, Meehan E, O’Malley D, Clarke N, Ramtoola Z, Brayden D. Binding and uptake of biodegradable poly-D,L-lactide micro- and nanoparticles in intestinal epithelia. Eur J Pharm Sci 1998; 6: 153–163
  • McMinn LH, Hodges GM, Carr KE. Gastrointestinal uptake and translocation of microparticles in the streptozotocin-diabetic rat. J Anat 1996; 189: 553–559
  • Montcourrier P, Lelouard H, Maury J, Mangeat P, Reggio H. Apical membranes from M-cells and enterocytes have different carbohydrate expression and are recognised by different monoclonal antibodies in rabbit appendix and Peyer's patches. Biol Cell 1996; 88: 78–178
  • Montgomery PC, Rafferty DE. Induction of secretory and serum antibody response following oral administration of antigen with bioadhesive degradable starch microparticles. Oral Microbiol Immunol 1998; 13: 139–149
  • Mutwiri GK, Kosecka U, Benjamin M, Rosendal S, Perdue M, Butler DG. Mycobacterium avium subspecies paratuberculosis triggers intestinal pathophysiologic changes in beige/scid mice. Comp Med 2001; 51: 538–544
  • Nefzger M, Kreuter J, Voges R, Liehl E, Czok R. Distribution and elimination of polymethyl methacrylate nanoparticles after peroral administration to rats. J Pharm Sci 1984; 73: 1309–1311
  • Norris DA, Sinko PJ. Effect of size, surface charge, and hydrophobicity on the translocation of polystyrene microspheres through gastrointestinal mucin. J Appl Polym Sci 1997; 63: 1481–1492
  • O’Hagan TD. The intestinal uptake of particles and the implications for drug and antigen delivery. J Anat 1996; 189: 477–482
  • Owen RL, Pierce NF, Apple RT, Cray Jr WC. M cell transport of Vibrio cholera from the intestinal lumen into Peyer's patches: A mechanism for antigen sampling and for microbial trans-epithelial migration. J Infect Dis 1986; 153: 1108–1118
  • Pappo J, Ermak TH. Uptake and translocation of fluorescent latex particles by rabbit Peyer's patch follicle epithelium: A quantitative model for M cell uptake. Clin Exp Immunol 1989; 76: 144–148
  • Prinn KB, Costantino HR, Tracy M. Statistical modeling of protein spray drying at the laboratory scale. AAPS PharmSciTech 2002; 3: 1–8
  • Rieux D, Ragnarsson E. Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur J Pharm Sci 2005; 25: 455–465
  • Rodriguez FJ, Abraham SC, Allen MS, Sebo TJ. Fine-needle aspiration cytology findings from a case of pancreatic heterotopia at the gastroesophageal junction. Diagn Cytopathol 2004; 31: 175–179
  • Roth-Walter F, Scholl I, Untersmayr E, Ellinger A, Boltz-Nitulescu G, Scheiner O, Gabor F, Jensen-Jarolim E. Mucosal targeting of allergen-loaded microspheres by Aleuria aurantia lectin. Vaccine 2005; 23: 2703–2710
  • Sanderson IR, Walker WA. Uptake and transport of macromolecules by the intestine: Possible role of clinical disorders (an update). Gastroenterology 1993; 104: 622–639
  • Shah DN, Recktenwall-Work SM, Anseth KS. The effect of bioactive hydrogels on the secretion of extracellular matrix molecules by valvular interstitial cells. Biomaterials 2008; 29: 2060–2072
  • Sicinski P, Rowinski J, Warchol JB, Jarzabek Z, Gut W, Szczygiel B. Poliovirus type 1 enters the human host through the intestinal M cells. Gastroenterology 1990; 98: 56–58
  • Sinha VR, Trehan A. Biodegradable microspheres for protein delivery. J Contr Rel 2003; 90: 261–280
  • Smith MW, Thomas NW, Jenkins PG, Miller NGA, Cremaschi D, Porta C. Selective transport of microparticles across Peyer's patch follicle associated M cells from mice and rats. Exp Physiol 1995; 80: 735–744
  • Szentkuti L. Light microscopical observation on luminally administered dyes, dextrans, nanospheres and microspheres in the pre-epithelial mucus gel layer of rat distal colon. J Contr Rel 1997; 46: 233–242
  • Tabata Y, Inoue Y, Ikada Y. Size effect on systemic and mucosal immune responses induced by oral administration of biodegradable microspheres. Vaccine 1996; 14: 1677–1685
  • Tyrer PC, Foxwell AR, Kyd JM, Octczyk DC, Cripps AW. Receptor mediated targeted of M cells. Vaccine 2007; 25: 3204–3209
  • Vanbever R, Mintzes JD, Wang J, Nice J, Chen D, Batycky R, Langer R, Edwards DA. Formulation and physical characteristics of large porous particles for inhalation. Pharm Res 1999; 16: 1735–1742
  • Van Der Lubben IM, Opdorp FAC. Transport of chitosan microparticles for mucosal vaccine delivery in a human intestinal model. J Drug Target 2002; 10: 449–456
  • Vasir JK, Tambwekar K, Garg S. Bioadhesive microspheres as a controlled drug delivery system. Int J Pharm 2003; 255: 13–32
  • Yeboah KG, D'Souza MJ. Evaluation of albumin microspheres as oral delivery system for Mycobacterium tuberculosis vaccines. J Microencapsulation 2009; 26: 166–179
  • Zinkernagel RM, Ehl S, Aichele P, Oehen S, Kundig T, Hengartner H. Antigen localization regulates immune responses in a dose- and time-dependent fashion: A geographical review of immune reactivity. Immunol Rev 1997; 156: 199–209

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.