161
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Development of a novel lipidic nanoparticle probe using liposomal encapsulated Gd2O3–DEG for molecular MRI

, , , , , , , & show all
Pages 613-623 | Received 03 Jul 2012, Accepted 07 Jan 2013, Published online: 05 Aug 2013

References

  • Artemov D. Molecular magnetic resonance imaging with targeted contrast agents. J Cell Biochem 2003; 90: 518–24
  • Casula M, Corrias A, Arosio P, Lascialfari A, Sen T, Floris P, Bruce IJ. Design of water-based ferrofluids as contrast agents for magnetic resonance imaging. J Colloid Interface Sci 2011; 357: 50–5
  • Casula M, Floris P, Innocenti C, Lascialfari A, Marinone M, Corti M, Sperling RA, Parak WJ, Sangregorio C. Magnetic resonance imaging contrast agents based on Iron oxide superparamagnetic ferrofluids. Chem Mater 2010; 22: 1739–48
  • De Cuyper M, Soenen SJH, Coenegrachts K, Ter Beek L. Surface functionalization of magnetoliposomes in view of improving iron oxide-based magnetic resonance imaging contrast agents: Anchoring of gadolinium ions to a lipophilic chelate. Anal Biochem 2007; 367: 266–73
  • Faucher L, Gossuin Y, Fortin MA. Impact of agglomeration on the relaxometric properties of gadolinium oxide nanoparticles. Nanotechnology 2011a; 22: 295103
  • Faucher L, Guay-Bégin AA, Lagueux J, Côté MF, Petitclerc E, Fortin MA. Ultra-small gadolinium oxide nanoparticles to image brain cancer cells in vivo with MRI. Contrast Media Mol Imaging 2011b; 6: 209–18
  • Fortin M, Petoral JJ, Söderlind F, Klasson A, Engström M, Veres T, Käll PO, Uvdal K. Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning. Nanotechnology 2007; 18: 1–9
  • Ghaghada K, Hawley C, Kawaji K, Annapragada A, Mukundan JS. T1 relaxivity of core-encapsulated gadolinium liposomal contrast agents effect of liposome size and internal gadolinium concentration. Acad Radiol 2008; 15: 1259–63
  • Gløgard CH, Stensrud G, Aime S. Novel radical-responsive MRI contrast agent based on paramagnetic liposomes. Magn Reson Chem 2003; 41: 585–8
  • Hedlund A, Ahrén M, Gustafsson H, Abrikossova N, Warntjes M, Jönsson JI, Uvdal K, Engström M. Gd2O3 nanoparticles in hematopoietic cells for MRI contrast enhancement. Int J Nanomedicine 2011; 6: 3233–40
  • Hengerer A, Grimm J. Molecular magnetic resonance imaging. Biomed Imaging Interv J 2006; 2: 1–7
  • Kambayashi Y, Yamamoto Y, Nakano M. Preferential hydrolysis of oxidized phosphatidylcholine in cholesterol-containing phosphatidylcholine liposome by phospholipase A2. Biochem Biophys Res Commun 1998; 245: 705–8
  • Klasson A, Ahrén M, Hellqvist E, Söderlind F, Rosén A, Käll PO, Uvdal K, Engström M. Positive MRI contrast enhancement in THP-1 cells with Gd2O3 nanoparticles. Contrast Media Mol Imaging 2008; 3: 106–11
  • Kontogiannopoulos KN, Assimopoulou AN, Dimas K, Papageorgiou VP. Shikonin–loaded liposomes as a new drug delivery system: Physicochemical characterization and in vitro cytotoxicity. Eur J Lipid Sci Tech 2011; 113: 1113–23
  • Kontogiannopoulos KN, Assimopoulou AN, Hatziantoniou S, Karatasos K, Demetzos C, Papageorgiou VP. Chimeric advanced drug delivery nano systems (chi-aDDnSs) for shikonin combining dendritic and liposomal technology. Int J Pharm 2012; 422: 381–9
  • Kozlowska D, Foran P, MacMahon P, Shelly M, Eustace S, O’Kennedy R. Molecular and magnetic resonance imaging: The value of immunoliposomes. Adv Drug Deliv Rev 2009; 61: 1402–11
  • Krishnan KM. Biomedical nanomagnetics: A spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 2010; 46: 2523–58
  • Kuo P. Gadolinium-containing MRI contrast agents: Important variations on a theme for NSF. J Am Coll Radiol 2008; 5: 29–35
  • Kuriashkin I, Losonsky J. Contrast enhancement in magnetic resonance imaging using intravenous paramagnetic contrast media: A review. Vet Radiol Ultrasound 2000; 41: 4–7
  • Lauffer RB. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: Theory and design. Chem Rev 1987; 87: 901–27
  • Laurent S, Elst LV, Muller RN. Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents. Contrast Med Mol Imaging 2006; 1: 128–37
  • Liu Y, Chen Z, Zhang N. Novel nanovectors as liver targeting MRI contrast agents. J Chin Pharmaceut Sci 2011; 20: 105–17
  • Oliver M, Ahmad A, Kamaly N, Perouzel E, Caussin A, Keller M, Herlihy A, Bell J, Miller AD, Jorgensen MR. MAGfect: A novel liposome formulation for MRI labelling and visualization of cells. Org Biomol Chem 2006; 18: 3489–97
  • Oussoren C, Eling W, Crommelin D, Storm G, Zuidema J. The influence of the route of administration and liposome composition on the potential of liposomes to protect tissue against local toxicity of two antitumor drugs. Biochim Biophys Acta 1998; 1369: 159–72
  • Paradissis A, Hatziantoniou S, Georgopoulos A, Demetzos C. Lipid analysis of Greek broad bean oil: Preparation of liposomes and physicochemical characterization. Eur J Lipid Sci Technol 2005; 107: 799–804
  • Park JY, Choi ES, Baek MJ, Lee GH, Woo S, Chang Y. Water-soluble ultra small paramagnetic or superparamagnetic metal oxide nanoparticles for molecular MR imaging. Eur J Inorg Chem 2009; 17: 2477–81
  • Pedersen H, Soderlind F, Ojamae L. Surfaceinteractions between Y2O3 nanocrystals and organicmolecules – An experimental and quantum-chemicalstudy. Surf Sci 2005; 592: 124–40
  • Prijic S, Sersa G. Magnetic nanoparticles as targeted deliverysystems in oncology. Radiol Oncol J 2011; 45: 1–16
  • Riyahi-Alam N, Behrouzkia Z, Haghgoo S, Seifalian A, Aghdam RZ, Azizian G. Gd2O3 nanoparticles as a positive MRI contrast agent for cell uptake. IEEE Conference Biomedical Engineering (ICBME) 17th Iranian Conference, Isfahanpp. 1–4, 2010a
  • Riyahi-Alam N, Behrouzkia Z, Seifalian A, Haghgoo S. Properties evaluation of a new MRI contrast agent based on Gd-Loaded nanoparticles. Biol Trace Elem Res 2010b; 137: 324–34
  • Roberts D, Zhu WL, Frommen CM, Rosenzweig Z. Synthesis of gadolinium oxide magnetoliposomes for magnetic resonance imaging. Appl Phys J 2000; 87: 6208–10
  • Seymour LW. Passive tumor targeting of soluble macromolecules and drug conjugates. Crit Rev Ther Drug Carrier Syst 1992; 9: 135–87
  • Soenen SJ, Velde GV, Ketkar-Atre A, Himmelreich U, Cuyper MD. Magnetoliposomes as magnetic resonance imaging contrast agents. Nanomed Nanobiotechnol J 2011; 3: 197–211
  • Strijkers GJ, Mulder WJM, Heeswijk RBV, Frederik PM, Bomans P, Magusin PC, Nicolay K. Relaxivity of liposomal paramagnetic MRI contrast agents. MAGMA 2005; 18: 186–92
  • Takano S, Aramaki Y, Tsuchiya S. Physicochemical properties of liposomes affecting apoptosis induced by cationic liposomes in macrophages. Pharm Res 2003; 20: 962–8
  • Tilcock C, Unger E, Cullis P, MacDougall P. Liposomal Gd-DTPA: Preparation and characterization of relaxivity. Vet Radiol Ultrasound 1989; 171: 77–80
  • Yadav AV, Murthy MS, Shete AS, Sfurti S. Stability aspects of liposomes. Ind J Pharm Edu Res 2011; 45: 402–13

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.