446
Views
40
CrossRef citations to date
0
Altmetric
Research Article

The role of particle physico-chemical properties in pulmonary drug delivery for tuberculosis therapy

, &
Pages 785-795 | Received 07 Jan 2014, Accepted 03 Jun 2014, Published online: 04 Aug 2014

References

  • Aggarwal P, Hall JB, Mcleland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev, 2009;61:428–37
  • Barnes PJ, Nicolini G, Bizzi A, Spinola M, Singh D. Do inhaled corticosteroid/long-acting beta2-agonist fixed combinations provide superior clinical benefits compared with separate inhalers? A literature reappraisal. Allergy Asthma Proc, 2012;33:140–4
  • Berishvili TA. PAS inhalation therapy of respiratory tuberculosis in the sanatorium LIBANI; preliminary communication. Probl Tuberk, 1954;4:69–70
  • Brennan MJ, Clagett B, Fitzgerald H, Chen V, Williams A, Izzo AA, Barker LF. Preclinical evidence for implementing a prime-boost vaccine strategy for tuberculosis. Vaccine, 2012;30:2811–23
  • Brewer TF. Preventing tuberculosis with bacillus Calmette-Guerin vaccine: A meta-analysis of the literature. Clin Infect Dis, 2000;31:S64–7
  • Carvalho TC, Peters JI, Williams RO III. Influence of particle size on regional lung deposition – what evidence is there? Int J Pharm, 2011;406:1–10
  • Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA, 2007;104:2050–5
  • Chan JG, Chan HK, Prestidge CA, Denman JA, Young PM, Traini D. A novel dry powder inhalable formulation incorporating three first-line anti-tubercular antibiotics. Eur J Pharm Biopharm, 2012;83:285--92
  • Dahl AR, Lewis JL. Respiratory tract uptake of inhalants and metabolism of xenobiotics. Annu Rev Pharmacol Toxicol, 1993;33:383–407
  • Dharmadhikari AS, Kabadi M, Gerety B, Hickey AJ, Fourie PB, Nardell E. Phase I, single-dose, dose-escalating study of inhaled dry powder capreomycin: A new approach to therapy of drug-resistant tuberculosis. Antimicrob Agents Chemother, 2013;57:2613–19
  • Diacon AH, Dawson R, du Bois J, Narunsky K, Venter A, Donald PR, van Niekerk C, Erondu N, Ginsberg AM, Becker P, Spigelman MK. Phase II dose-ranging trial of the early bactericidal activity of PA-824. Antimicrob Agents Chemother, 2012;56:3027–31
  • Edwards DA, Hanes J, Caponetti G, Hrkach J, Ben-Jebria A, Eskew ML, Mintzes J, Deaver D, Lotan N, Langer R. Large porous particles for pulmonary drug delivery. Science, 1997;276:1868–71
  • Eixarch H, Haltner-Ukomadu E, Beisswenger C, Bock U. Drug delivery to the lung: Permeability and physicochemical characteristics of drugs as the basis for a pulmonary biopharmaceutical classification system (pBCS). J Epithelial Biol Pharmacol, 2010;3:1–14
  • Elvang T, Christensen JP, Billeskov R, Thi Kim Thanh Hoang T, Holst P, Thomsen AR, Andersen P, Dietrich J. CD4 and CD8 T cell responses to the M. tuberculosis Ag85B-TB10.4 promoted by adjuvanted subunit, adenovector or heterologous prime boost vaccination. PLoS One, 2009;4:e5139
  • Fiegel J, Garcia-Contreras L, Thomas M, Verberkmoes J, Elbert K, Hickey A, Edwards D. Preparation and in vivo evaluation of a dry powder for inhalation of capreomycin. Pharm Res, 2008;25:805–11
  • Fox W. Whither short-course chemotherapy? Br J Dis Chest, 1981;75:331–57
  • Garcia-Contreras L, Fiegel J, Telko M, Elbert K, Hawi A, Thomas M, Verberkmoes J, Germishuizen W, Fourie P, Hickey A, Edwards D. Inhaled large porous particles of capreomycin for treatment of tuberculosis in a guinea pig model. Antimicrob Agents Chemother, 2007;51:2830–6
  • Garcia-Contreras L, Muttil P, Fallon JK, Kabadi M, Gerety R, Hickey AJ. Pharmacokinetics of sequential doses of capreomycin powder for inhalation in guinea pigs. Antimicrob Agents Chemother, 2012;56:2612–18
  • Garcia-Contreras L, Sung JC, Muttil P, Padilla D, Telko M, Verberkmoes JL, Elbert KJ, Hickey AJ, Edwards DA. Dry powder PA-824 aerosols for treatment of tuberculosis in guinea pigs. Antimicrob Agents Chemother, 2010;54:1436–42
  • Geller DE, Konstan MW, Smith J, Noonberg SB, Conrad C. Novel tobramycin inhalation powder in cystic fibrosis subjects: Pharmacokinetics and safety. Pediatr Pulmonol, 2007;42:307–13
  • Gonzalez-Juarrero M, O’Sullivan MP. Optimization of inhaled therapies for tuberculosis: The role of macrophages and dendritic cells. Tuberculosis (Edinb), 2011;91:86–92
  • Goodman DE, Israel E, Rosenberg M, Johnston R, Weiss ST, Drazen JM. The influence of age, diagnosis, and gender on proper use of metered-dose inhalers. Am J Respir Crit Care Med, 1994;150:1256–61
  • Goodwin B, Hodgson E, Liddle C. The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol Pharmacol, 1999;56:1329–39
  • Greiner B, Eichelbaum M, Fritz P, Kreichgauer HP, von Richter O, Zundler J, Kroemer HK. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest, 1999;104:147–53
  • Hanif SN, Garcia-Contreras L. Pharmaceutical aerosols for the treatment and prevention of tuberculosis. Front Cell Infect Microbiol, 2012;2:118
  • Hassan MS, Lau RW. Effect of particle shape on dry particle inhalation: Study of flowability, aerosolization, and deposition properties. AAPS PharmSciTech, 2009;10:1252–62
  • Hickey AJ, Misra A, Fourie PB. Dry powder antibiotic aerosol product development: Inhaled therapy for tuberculosis. J Pharm Sci, 2013;102:3900–7
  • Hirata T, Saito H, Tomioka H, Sato K, Jidoi J, Hosoe K, Hidaka T. In vitro and in vivo activities of the benzoxazinorifamycin KRM-1648 against Mycobacterium tuberculosis. Antimicrob Agents Chemother, 1995;39:2295–303
  • Hirota K, Hasegawa T, Nakajima T, Inagawa H, Kohchi C, Soma G, Makino K, Terada H. Delivery of rifampicin-PLGA microspheres into alveolar macrophages is promising for treatment of tuberculosis. J Control Release, 2010;142:339–46
  • Hofmann W. Modelling inhaled particle deposition in the human lung – A review. J Aerosol Sci, 2011;42:693–724
  • Hwang SM, Kim DD, Chung SJ, Shim CK. Delivery of ofloxacin to the lung and alveolar macrophages via hyaluronan microspheres for the treatment of tuberculosis. J Control Release, 2008;129:100–6
  • ICMR. Fifteen year follow up of trial of BCG vaccines in south India for tuberculosis prevention. Tuberculosis Research Centre (ICMR), Chennai. Indian J Med Res, 1999;110:56–69
  • Krishna DR, Klotz U. Extrahepatic metabolism of drugs in humans. Clin Pharmacokinet, 1994;26:144–60
  • Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol, 2003;56:588–99
  • Li X, Manjunatha UH, Goodwin MB, Knox JE, Lipinski CA, Keller TH, Barry CE III, Dowd CS. Synthesis and antitubercular activity of 7-(R)- and 7-(S)-methyl-2-nitro-6-(S)-(4-(trifluoromethoxy)benzyloxy)-6,7-dihydro-5H-imidazo [2,1-b][1,3]oxazines, analogues of PA-824. Bioorg Med Chem Lett, 2008;18:2256–62
  • Lipworth B. Targeting the small airways asthma phenotype: If we can reach it, should we treat it? Ann Allergy Asthma Immunol, 2013;110:233–9
  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA, 2008;105:14265–70
  • Martonen T. Deposition of inhaled particulate matter in the upper respiratory-tract, larynx, and bronchial airways – A mathematical-description. J Toxicol Environ Health, 1983a;12:787–800
  • Martonen T. On the fate of inhaled particles in the human – A comparison of experimental-data with theoretical computations based on a symmetric and asymmetric lung. Bull Math Biol, 1983b;45:409–24
  • Misra A, Hickey AJ, Rossi C, Borchard G, Terada H, Makino K, Fourie PB, Colombo P. Inhaled drug therapy for treatment of tuberculosis. Tuberculosis (Edinb), 2011;91:71–81
  • Mitchison D, Davies G. The chemotherapy of tuberculosis: Past, present and future. Int J Tuberc Lung Dis, 2012;16:724–32
  • Mitchison DA. Role of individual drugs in the chemotherapy of tuberculosis. Int J Tuberc Lung Dis, 2000;4:796–806
  • Mitchison DA, Fourie PB. The near future: Improving the activity of rifamycins and pyrazinamide. Tuberculosis (Edinb), 2010;90:177–81
  • Mortensen NP, Hurst GB, Wang W, Foster CM, Nallathamby PD, Retterer ST. Dynamic development of the protein corona on silica nanoparticles: Composition and role in toxicity. Nanoscale, 2013;5:6372--80
  • Muttil P, Kaur J, Kumar K, Yadav AB, Sharma R, Misra A. Inhalable microparticles containing large payload of anti-tuberculosis drugs. Eur J Pharm Sci, 2007;32:140–50
  • Muttil P, Wang C, Hickey AJ. Inhaled drug delivery for tuberculosis therapy. Pharm Res, 2009;26:2401–16
  • O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MP. The immune response in tuberculosis. Annu Rev Immunol, 2013;31:475–527
  • O’Hara P, Hickey AJ. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: Manufacture and characterization. Pharm Res, 2000;17:955–61
  • Palazzo F, Giovagnoli S, Schoubben A, Blasi P, Rossi C, Ricci M. Development of a spray-drying method for the formulation of respirable microparticles containing ofloxacin-palladium complex. Int J Pharm, 2013;440:273–82
  • Pandey R, Khuller GK. Antitubercular inhaled therapy: Opportunities, progress and challenges. J Antimicrob Chemother, 2005a;55:430–5
  • Pandey R, Khuller GK. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinb), 2005b;85:227–34
  • Park JH, Jin HE, Kim DD, Chung SJ, Shim WS, Shim CK. Chitosan microspheres as an alveolar macrophage delivery system of ofloxacin via pulmonary inhalation. Int J Pharm, 2013;441:562–9
  • Patton JS, Byron PR. Inhaling medicines: Delivering drugs to the body through the lungs. Nat Rev Drug Discov, 2007;6:67–74
  • Rastogi N, Labrousse V, Goh KS. In vitro activities of fourteen antimicrobial agents against drug susceptible and resistant clinical isolates of Mycobacterium tuberculosis and comparative intracellular activities against the virulent H37Rv strain in human macrophages. Curr Microbiol, 1996;33:167–75
  • Rojanarat W, Changsan N, Tawithong E, Pinsuwan S, Chan HK, Srichana T. Isoniazid proliposome powders for inhalation-preparation, characterization and cell culture studies. Int J Mol Sci, 2011;12:4414–34
  • Rojanarat W, Nakpheng T, Thawithong E, Yanyium N, Srichana T. Inhaled pyrazinamide proliposome for targeting alveolar macrophages. Drug Deliv, 2012;19:334–45
  • Roy CJ, Sivasubramani SK, Dutta NK, Mehra S, Golden NA, Killeen S, Talton JD, Hammoud BE, Didier PJ, Kaushal D. Aerosolized gentamicin reduces the burden of tuberculosis in a murine model. Antimicrob Agents Chemother, 2012;56:883–6
  • Sakagami M. In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv Drug Del Rev, 2006;58:1030–60
  • Schoubben A, Blasi P, Marenzoni ML, Barberini L, Giovagnoli S, Cirotto C, Ricci M. Capreomycin supergenerics for pulmonary tuberculosis treatment: Preparation, in vitro, and in vivo characterization. Eur J Pharm Biopharm, 2013;83:388–95
  • Shandil RK, Jayaram R, Kaur P, Gaonkar S, Suresh BL, Mahesh BN, Jayashree R, Nandi V, Bharath S, Balasubramanian V. Moxifloxacin, ofloxacin, sparfloxacin, and ciprofloxacin against Mycobacterium tuberculosis: Evaluation of in vitro and pharmacodynamic indices that best predict in vivo efficacy. Antimicrob Agents Chemother, 2007;51:576–82
  • Sharma R, Saxena D, Dwivedi AK, Misra A. Inhalable microparticles containing drug combinations to target alveolar macrophages for treatment of pulmonary tuberculosis. Pharm Res, 2001;18:1405–10
  • Stover CK, Warrener P, Vandevanter DR, Sherman DR, Arain TM, Langhorne MH, Anderson SW, Towell JA, Yuan Y, McMurray DN, et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature, 2000;405:962–6
  • Suarez S, O’Hara P, Kazantseva M, Newcomer CE, Hopfer R, McMurray DN, Hickey AJ. Airways delivery of rifampicin microparticles for the treatment of tuberculosis. J Antimicrob Chemother, 2001a;48:431–4
  • Suarez S, O’Hara P, Kazantseva M, Newcomer CE, Hopfer R, McMurray DN, Hickey AJ. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: Screening in an infectious disease model. Pharm Res, 2001b;18:1315–19
  • Sung JC, Garcia-Contreras L, Verberkmoes JL, Peloquin CA, Elbert KJ, Hickey AJ, Edwards DA. Dry powder nitroimidazopyran antibiotic PA-824 aerosol for inhalation. Antimicrob Agents Chemother, 2009;53:1338–43
  • Swift DL. Generation and respiratory deposition of therapeutic aerosols. Am Rev Respir Dis, 1980;122:71–7
  • Telko MJ, Hickey AJ. Dry powder inhaler formulation. Respir Care, 2005;50:1209–27
  • Tsapis N, Bennett D, O’Driscoll K, Shea K, Lipp M, Fu K, Clarke R, Deaver D, Yamins D, Wright J, et al. Direct lung delivery of para-aminosalicylic acid by aerosol particles. Tuberculosis, 2003;83:379–85
  • Ulrik CS, Lange P. Targeting small airways in asthma: Improvement in clinical benefit? Clin Respir J, 2011;5:125–30
  • Upton RN, Doolette DJ. Kinetic aspects of drug disposition in the lungs. Clin Exp Pharmacol Physiol, 1999;26:381–91
  • Verma RK, Germishuizen WA, Motheo MP, Agrawal AK, Singh AK, Mohan M, Gupta P, Gupta UD, Cholo M, Anderson R, et al. Inhaled microparticles containing clofazimine are efficacious in treatment of experimental tuberculosis in mice. Antimicrob Agents Chemother, 2013;57:1050–2
  • Verma RK, Singh AK, Mohan M, Agrawal AK, Misra A. Inhaled therapies for tuberculosis and the relevance of activation of lung macrophages by particulate drug-delivery systems. Ther Deliv, 2011;2:753–68
  • Vroman L. Effect of adsorbed proteins on wettability of hydrophilic and hydrophobic solids. Nature, 1962;196:476
  • Vroman L, Adams AL, Fischer GC, Munoz PC. Interaction of high molecular-weight kininogen, factor-XII, and fibrinogen in plasma at interfaces. Blood, 1980;55:156–9
  • Wang C, Muttil P, Lu D, Beltran-Torres AA, Garcia-Contreras L, Hickey AJ. Screening for potential adjuvants administered by the pulmonary route for tuberculosis vaccines. AAPS J, 2009;11:139–47
  • Wanger A, Mills K. Testing of Mycobacterium tuberculosis susceptibility to ethambutol, isoniazid, rifampin, and streptomycin by using Etest. J Clin Microbiol, 1996;34:1672–6
  • WHO. 2012. Global Tuberculosis Report 2012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.