264
Views
8
CrossRef citations to date
0
Altmetric
Research Article

An understanding of potential and limitations of alginate/PLL microcapsules as a cell retention system for perfusion cultures

, &
Pages 80-88 | Received 26 Feb 2015, Accepted 16 Nov 2015, Published online: 11 Jan 2016

References

  • Brandenberger H, Nüssli D, Piëch V, Widmer F. Monodisperse particle production: A method to prevent drop coalescence using electrostatic forces. J Electrostat, 1999;45:227–38.
  • Brandenberger H, Widmer F. A new multinozzle encapsulation/immobilisation system to produce uniform beads of alginate. J Biotechnol, 1998;63:73–80.
  • Breguet V, Gugerli R, Stockar U, Marison IW. CHO immobilization in alginate/poly-L: -lysine microcapsules: An understanding of potential and limitations. Cytotechnology, 2007;53:81–93.
  • Castilho L, Moraes A, Augusto E, Butler M. 2008. Animal cell technology: Biopharmaceuticals to gene therapy. New York: Taylor & Francis.
  • Chan ES, Lim TK, Voo WP, Pogaku R, Tey BT, Zhang Z. Effect of formulation of alginate beads on their mechanical behavior and stiffness. Particuology, 2011;9:228–34.
  • Clincke MF, Mölleryd C, Zhang Y, Lindskog E, Walsh K, Chotteau V. Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactor™. Part I. Effect of the cell density on the process. Biotechnol Prog, 2013a;29:754–67.
  • Clincke MF, Mölleryd C, Samani PK, Lindskog E, Fäldt E, Walsh K, Chotteau V. Very high density of Chinese hamster ovary cells in perfusion by alternating tangential flow or tangential flow filtration in WAVE Bioreactor™-part II: Applications for antibody production and cryopreservation. Biotechnol Prog, 2013b;29:768–77.
  • Cole HE, Demont A, Marison IW. The application of dielectric spectroscopy and biocalorimetry for the monitoring of biomass in immobilized mammalian cell cultures. Processes, 2015;3:384–405.
  • Desimone MF, De Marzi MC, Alvarez GS, Mathov I, Diaz LE, Malchiodi EL. Production of monoclonal antibodies from hybridoma cells immobilized in 3D sol-gel silica matrices. J Mater Chem, 2011;21:13865.
  • Draget KI, Steinsvåg K, Onsøyen E, Smidsrød O. Na- and K-alginate; effect on Ca2+-gelation. Carbohydr Polym, 1998;35:1–6.
  • Duff RG. Microencapsulation technology: A novel method for monoclonal antibody production. Trends Biotechnol, 1985;3:167–70.
  • Gåserød O, Sannes A, Skjåk-Bræk G. Microcapsules of alginate-chitosan. II. A study of capsule stability and permeability. Biomaterials, 1999;20:773–83.
  • Gåserød O, Smidsrød O, Skjåk-Bræk G. Microcapsules of alginate-chitosan-I. A quantitative study of the interaction between alginate and chitosan. Biomaterials, 1998;19:1815–25.
  • Gugerli R. 2003. Polyelectrolyte-complex and covalent complex microcapsules for encapsulation of mammalian cells: Potential and limitations. Lausanne, Switzerland: EPFL.
  • Guo JF, Jourdian GW, MacCallum DK. Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Connect Tissue Res, 1989;19:277–97.
  • Harcum SW. 2005. Protein glycosylation. In: Sadettin Ozturk, Wei-Shou Hu eds. Cell culture technology for pharmaceutical and cell-based therapies. Boca Raton, FL: CRC Press, pp. 113–53.
  • Hollingshead MG, Alley MC, Camalier RF, Abbott BJ, Mayo JG, Malspeis L, Grever MR. In vivo cultivation of tumor cells in hollow fibers. Life Sci, 1995;57:131–41.
  • Huebner H, Buccholz R. 1999. Microencapsulation. In: Flickinger MC, Drew SW, eds. Encyclopedia of bioprocess technology: Biocatalysis and bioseparation. Weinheim, Germany: Wiley, pp. 1785–98.
  • Jarvis AP Jr, Grdina TA, Sullivan MF. Cell growth and hemoglobin synthesis in murine erythroleukemic cells propagated in high density microcapsule culture. In Vitro Cell Dev Biol, 1986;22:589–96.
  • Jöchle W. Forty years of control of the oestrous cycle in ruminants: Progress made, unresolved problems and the potential impact of sperm encapsulation technology. Reprod Fertil Dev, 1993;5:587–94.
  • Lao MS, Toth D. Effects of ammonium and lactate on growth and metabolism of a recombinant Chinese hamster ovary cell culture. Biotechnol Prog, 1997;13:688–91.
  • Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science, 1980;210:908–10.
  • Lim F. 1982. Encapsulation of biological material. Patent US 4352883.
  • Lim F. 1983. Microcapsules containing viable tissue cells. Patent US 4391909 A.
  • Loty S, Sautier JM, Loty C, Boulekbache H, Kokubo T, Forest N. Cartilage formation by fetal rat chondrocytes cultured in alginate beads: A proposed model for investigating tissue-biomaterial interactions. J Biomed Mater Res, 1998;42:213–22.
  • Martinsen A, Skjåk-Bræk G, Smidsrød O. Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol Bioeng, 1989;33:79–89.
  • McMahon J, Schmid S, Weislow O, Stinson S, Camalier R, Gulakowski R, Shoemaker R, Kiser R, Dykes D, Harrison S, et al. Feasibility of cellular microencapsulation technology for evaluation of anti-human immunodeficiency virus drugs in vivo. J Natl Cancer Inst, 1990;82:1761–5.
  • Nebel RL, Vishwanath R, McMillan WH, Saacke RG. Microencapsulation of bovine spermatozoa for use in artificial insemination: A review. Reprod Fertil Dev, 1993;5:701–12.
  • Okada N, Fushimi M, Nagata Y, Fukunaga T, Tsutsumi Y, Nakagawa S, Mayumi T. Evaluation of angiogenic inhibitors with an in vivo quantitative angiogenesis method using agarose microencapsulation and mouse hemoglobin enzyme-linked immunosorbent assay. Jpn J Cancer Res, 1996;87:952–7.
  • Okada N, Fushimi M, Nagata Y, Fukunaga T, Tsutsumi Y, Nakagawa S, Mayumi T. A quantitative in vivo method of analyzing human tumor-induced angiogenesis in mice using agarose microencapsulation and hemoglobin enzyme-linked immunosorbent assay. Jpn J Cancer Res, 1995;86:1182–8.
  • Ozturk SS, Riley MR, Palsson BO. Effects of ammonia and lactate on hybridoma growth, metabolism, and antibody production. Biotechnol Bioeng, 1992;39:418–31.
  • Pajić-Lijaković I, Bugarski D, Plavšić M, Bugarski B. Influence of microenvironmental conditions on hybridoma cell growth inside the alginate-poly-L-lysine microcapsule. Process Biochem, 2007;42:167–74.
  • Pueyo ME, Darquy S, Arbet-Engels C, Poitout V, Di Maria S, Gangnerau MN, Reach G. A method for obtaining monodispersed cells from isolated porcine islets of Langerhans. Int J Artif Organs, 1995;18:34–8.
  • Santos E, Zarate J, Orive G, Hernández RM, Pedraz JL. 2010. Biomaterials in cell microencapsulation. In: Orive G. ed. Therapeutic applications of cell microencapsulation, advances in experimental medicine and biology. New York: Springer, pp. 5–21.
  • Schneider M, Marison IW, von Stockar U. The importance of ammonia in mammalian cell culture. J Biotechnol, 1996;46:161–85.
  • Serp D, Cantana E, Heinzen C, Von Stockar U, Marison IW. Characterization of an encapsulation device for the production of monodisperse alginate beads for cell immobilization. Biotechnol Bioeng, 2000;70:41–53.
  • Serra M, Correia C, Malpique R, Brito C, Jensen J, Bjorquist P, Carrondo MJ, Alves PM. Microencapsulation technology: A powerful tool for integrating expansion and cryopreservation of human embryonic stem cells. PLoS One, 2011;6:e23212.
  • Sobol M, Bartkowiak A, de Haan B, de Vos P. Cytotoxicity study of novel water-soluble chitosan derivatives applied as membrane material of alginate microcapsules. J Biomed Mater Res A, 2013;101A:1907–14.
  • Strand BL, Gåserød O, Kulseng B, Espevik T, Skjåk-Baek G. Alginate-polylysine-alginate microcapsules: Effect of size reduction on capsule properties. J Microencapsul, 2002;19:615–30.
  • Takabatake H, Koide N, Tsuji T. Encapsulated multicellular spheroids of rat hepatocytes produce albumin and urea in a spouted bed circulating culture system. Artif Organs, 1991;15:474–80.
  • Thu B, Bruheim P, Espevik T, Smidsrød O, Soon-Shiong P, Skjåk-Bræk G. Alginate polycation microcapsules. I. Interaction between alginate and polycation. Biomaterials, 1996a;17:1031–40.
  • Thu B, Bruheim P, Espevik T, Smidsrød O, Soon-Shiong P, Skjåk-Bræk G. Alginate polycation microcapsules. II. Some functional properties. Biomaterials, 1996b;17:1069–79.
  • Uludag H, De Vos P, Tresco PA. Technology of mammalian cell encapsulation. Adv Drug Deliv Rev, 2000;42:29–64.
  • Voisard D, Meuwly F, Ruffieux PA, Baer G, Kadouri A. Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechnol Bioeng, 2003;82:751–65.
  • Watson PF. The potential impact of sperm encapsulation technology on the importance of timing of artificial insemination: A perspective in the light of published work. Reprod Fertil Dev, 1993;5:691–9.
  • Whelehan M, Marison IW. Microencapsulation using vibrating technology. J Microencapsul, 2011;28:669–88.
  • Wilson JL, McDevitt TC. Stem cell microencapsulation for phenotypic control, bioprocessing, and transplantation. Biotechnol Bioeng, 2013;110:667–82.
  • Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol, 2004;22:1393–8.
  • Xie L, Zhou W. 2005. Fed-batch cultivation of mammalian cells for the production of recombinant proteins. In: Sadettin Ozturk, Wei-Shou Hu eds. Cell culture technology for pharmaceutical and cell-based therapies. Boca Raton, FL: CRC Press, pp. 349–86.
  • Zhu J. Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv, 2015;30:1158–70.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.