1,084
Views
53
CrossRef citations to date
0
Altmetric
Research Article

Interstitial microwave transition from hyperthermia to ablation: Historical perspectives and current trends in thermal therapy

, &
Pages 415-433 | Received 16 Jan 2009, Accepted 19 Jan 2010, Published online: 02 Jul 2010

References

  • Taylor LS. Electromagnetic syringe. IEEE Trans Biomed Eng 1978; 25: 303–304
  • Taylor L. Implantable radiators for cancer therapy by microwave hyperthermia. Proc IEEE 1980; 68: 142–149
  • Bigu-del-Blanco J, Romero-Sierra C. The design of a monopole radiator to investigate the effect of microwave radiation in biological systems. J Bioeng 1977; 1: 1181–1184
  • Strohbehn JW, Bowers ED, Walsh JE, Douple EB. An invasive microwave antenna for locally induced hyperthermia for cancer therapy. J Microw Power 1979; 14: 339–350
  • Douple EB, Strohbehn JW, Bowers ED, Walsh JE. Cancer therapy with localized hyperthermia using an invasive microwave system. J Microw Power 1979; 14: 181–186
  • Guy AW, Lehmann JF, Stonebridge JB. Therapeutic applications of electromagnetic power. Proc IEEE 1974; 62: 55–75
  • Sneed PK, Stauffer PR, McDermott MW, Diederich CJ, Lamborn KR, Prados MD, Chang S, Weaver KA, Spry L, Malec MK, et al. Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost +/− hyperthermia for glioblastoma multiforme. Int J Radiat Oncol Biol Phys 1998; 40: 287–295
  • Sapozink M, Boyd S, Astrahan M, Jozsef G, Petrovich Z. Transurethral hyperthermia for benign prostatic hyperplasia: Preliminary clinical results. J Urology 1990; 143: 944–950
  • Gross EJ, Cetas TC, Stauffer PR, Liu RL, Lumori ML. Experimental assessment of phased-array heating of neck tumours. Int J Hyperthermia 1990; 6: 453–474
  • Ryan TP, Trembly BS, Roberts DW, Strohbehn JW, Coughlin CT, Hoopes PJ. Brain hyperthermia: I. Interstitial microwave antenna array techniques–The Dartmouth experience. Int J Radiat Oncol Biol Phys 1994; 29: 1065–1078
  • Coughlin CT, Wong TZ, Ryan TP, Jones EL, Crichlow RW, Spiegel PK, Jeffery R. Interstitial microwave-induced hyperthermia and iridium brachytherapy for the treatment of obstructing biliary carcinomas. Int J Hyperthermia 1992; 8: 157–171
  • Sherar MD, Trachtenberg J, Davidson SR, Gertner MR. Interstitial microwave thermal therapy and its application to the treatment of recurrent prostate cancer. Int J Hyperthermia 2004; 20: 757–768
  • Seegenschmiedt MH, Martus P, Fietkau R, Iro H, Brady LW, Sauer R. Multivariate analysis of prognostic parameters using interstitial thermoradiotherapy (IHT-IRT): Tumor and treatment variables predict outcome. Int J Radiat Oncol Biol Phys 1994; 30: 1049–1063
  • Seegenschmiedt MH, Karlsson UL, Black P, Brady LW. Thermoradiotherapy for brain tumors. Three cases of recurrent malignant astrocytoma and review of clinical experience. Am J Clin Oncol 1995; 18: 510–518
  • Overgaard J, Gonzalez Gonzalez D, Hulshof MC, Arcangeli G, Dahl O, Mella O, Bentzen SM. Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma: European Society for Hyperthermic Oncology. Lancet 1995; 345: 540–543
  • Jones EL, Oleson JR, Prosnitz LR, Samulski TV, Vujaskovic Z, Yu D, Sanders LL, Dewhirst MW. Randomized trial of hyperthermia and radiation for superficial tumors. J Clin Oncol 2005; 23: 3079–3085
  • Emami B, Scott C, Perez CA, Asbell S, Swift P, Grigsby P, Montesano A, Rubin P, Curran W, Delrowe J, et al. Phase III study of interstitial thermoradiotherapy compared with interstitial radiotherapy alone in the treatment of recurrent or persistent human tumors. A prospectively controlled randomized study by the Radiation Therapy Group. Int J Radiat Oncol Biol Phys 1996; 15: 1097–1104
  • Ryan TP, Mechling JA, Strohbehn JW. Absorbed power deposition for various insertion depths for 915 MHz interstitial dipole antenna arrays: Experiment versus theory. Int J Radiat Oncol Biol Phys 1990; 19: 377–387
  • Ryan TP, Hoopes PJ, Taylor JH, Strohbehn JW, Roberts DW, Douple EB, Coughlin CT. Experimental brain hyperthermia: Techniques for heat delivery and thermometry. Int J Radiat Oncol Biol Phys 1991; 20: 739–750
  • Ryan TP. Comparison of six microwave antennas for hyperthermia treatment of cancer: SAR results for single antennas and arrays. Int J Radiat Oncol Biol Phys 1991; 21: 403–413
  • Kanaoka Y, Yoshida C, Fukuda T, Kajitani K, Ishiko O. Transcervical microwave myolysis for uterine myomas assisted by transvaginal ultrasonic guidance. J Obstet Gynaecol Res 2009; 35: 145–151
  • Liang P, Wang Y, Zhang D, Yu X, Gao Y, Ni X. Ultrasound guided percutaneous microwave ablation for small renal cancer: Initial experience. J Urol 2008; 180: 844–848
  • Carrafiello G, Laganà D, Mangini M, Fontana F, Dionigi G, Boni L, Rovera F, Cuffari S, Fugazzola C. Microwave tumors ablation: Principles, clinical applications and review of preliminary experiences. Int J Surg 2008; 6: S65–69
  • Grieco CA, Simon CJ, Mayo-Smith WW, Dipetrillo TA, Ready NE, Dupuy DE. Image-guided percutaneous thermal ablation for the palliative treatment of chest wall masses. Am J Clin Oncol 2007; 30: 361–367
  • Laing P, Wang Y. Microwave ablation of hepatocellular carcinoma. Oncology 2007; 72: 124–131
  • Liang P, Wang Y, Yu X, Dong B. Malignant liver tumors: Treatment with percutaneous microwave ablation–Complications among a cohort of 1136 patients. Radiology 2009; 251: 933–940
  • Carrafiello G, Laganà D, Mangini M, Fontana F, Dionigi G, Boni L, Rovera F, Cuffari S, Fugazzola C. Microwave tumors ablation: Principles, clinical applications and review of preliminary experiences. Int J Surg 2008; 6: S65–69
  • Chen JC, Moriarty JA, Derbyshire JA, Peters RD, Trachenberg J, Bell SD, Doyle J, Arrelano R, Wright GA, Henkleman RM, et al. Prostate cancer: MR imaging and thermometry during microwave thermal ablation-initial experience. Radiology 2000; 214: 290–297
  • Short G, Turner P. Physical hyperthermia and cancer therapy. Proc IEEE 1980; 68: 133–142
  • Turner P. Invasive hyperthermia apparatus and method. US Patent No. 4,448,198, 1984.
  • Waterman FM, Nerlinger RE. The effect of coupling materials on specific absorption rate distributions at 915 MHz. Med Phys 1986; 13: 391–395
  • Cheung AY, Neyzari A. Deep local hyperthermia for cancer therapy: External electromagnetic and ultrasound techniques. Cancer Res 1984; 44: S4736–4744
  • Hoh LL, Waterman FM. Use of manganin-constantan thermocouples in thermometry units designed for copper-constantan thermocouples. Int J Hyperthermia 1995; 11: 131–138
  • Turner P. Interstitial EM application/temperature probes. Proceedings of the Eighth Annual Conference of the IEEE Engineering in Medicine and Biology Society, 1986, Vol. 3: 1454–1457.
  • Turner P. Proceedings of the Eighth Annual Conference of the IEEE Engineering in Medicine and Biology Society, 86CH2368-9; 1986;3:1454–1457.
  • Turner P. Interstitial equal-phase arrays for EM hyperthermia. IEEE Trans Microw Theory Tech 1986; 34: 572–578
  • Trembly BS, Ryan TP, Strohbehn JW. Physics of microwave hyperthermia. Hyperthermia and oncology, volume 3: Interstitial hyperthermia: Physics, biology and clinical aspects, M Urano, E Douple. VSP Press, New York 1991; 11–98
  • Trembly BS. The effects of driving frequency and antenna length on power deposition within a microwave antenna array used for hyperthermia. IEEE Trans Biomed Eng 1985; 32: 152–157
  • Mechling JA, Strohbehn JW, France LJ. A theoretical evaluation of the performance of the Dartmouth IMAAH system to heat cylindrical and ellipsoidal tumour models. Int J Hyperthermia 1991; 7: 465–483
  • Kaye JD, Smith AD, Badlani GH, Lee BR, Ost MC. High-energy transurethral thermotherapy with CoreTherm approaches transurethral prostate resection in outcome efficacy: A meta-analysis. J Endourol 2008; 22: 713–718
  • Djavan B, Larson TR, Blute ML, Marberger M. Transurethral microwave thermotherapy: What role should it play versus medical management in the treatment of benign prostatic hyperplasia?. Urology 1998; 52: 935–947
  • Tabuse Y, Tabuse K, Mori K, Nagai Y, Kobayashi Y, Egawa H, Noguchi H, Yamaue H, Katsumi M, Nagasaki Y. Percutaneous microwave tissue coagulation in liver biopsy: Experimental and clinical studies. Nippon Geka Hokan 1986; 55: 381–392
  • Yamashita Y, Sakai T, Maekawa T, Watanabe K, Iwasaki A, Shirakusa T. Thorascopic transdiaphragmatic microwave coagulation therapy for a liver tumor. Surg Endoscopy 1998; 12: 1254–1258
  • Murakami R, Yoshimatsu S, Yamashita Y, Matsukawa T, Takahashi M, Sagara K. Treatment of hepatocellular carcinoma: Value of percutaneous microwave coagulation. Am J Radiol 1995; 164: 1159–1164
  • Rhim H. Review of Asian experience of thermal ablation techniques and clinical practices. Int J Hyperthermia 2004; 20: 699–712
  • Lu Y, Nan Q, Li L, Liu Y. Numerical study on thermal field of microwave ablation with water-cooled antenna. Int J Hyperthermia 2009; 25: 108–115
  • King RP, Trembly BS, Strohbehn JW. The electromagnetic field of an insulated antenna in a conducting or dielectric medium. IEEE Trans Biomed Eng 1983; 31: 574–583
  • Astrahan M, Luxton G, Petrovich Z. Thermometry characteristics of BSD interstitial hyperthermia applicator. Endocurie Hyperthermia Oncol 1987; 3: 153–160
  • Sathiaseelan V, Leytbovich L, Ememi B, Stauffer P, Straube W. Characteristics of improved microwave interstitial antennas for local hyperthermia. Int J Radiat Oncol Biol Phys 1991; 20: 531–539
  • Satoh T, Stauffer PR, Fike JR. Thermal distribution studies of helical coil microwave for interstitial hyperthermia. Int J Radiat Oncol Biol Phys 1988; 15: 1209–1218
  • Satoh T, Seilman TM, Stauffer PR, Sneed PK, Fike JR. Interstitial Helical coil microwave antenna for experimental brain hyperthermia. Neurosurgery 1988; 23: 564–569
  • Reeves JW, Birch MJ, Hand JW. Comparison of simulated and experimental results from helical antennas within a muscle equivalent phantom. Phys Med Biol 2008; 53: 3057–3070
  • Kuang M, Lu MD, Xie XY, Xu XY, Mo HX, Liu GJ, Xu ZF, Zheng YL, Liang JY. Liver cancer: Increased microwave delivery to ablation zone with cooled-shaft antenna: Experimental and clinical studies. Radiology 2007; 242: 914–924
  • Ryan TP, Clegg P. Novel microwave applicators for thermal therapy, ablation, and hemostasis. Thermal treatment of tissue: Energy delivery and assessment V, TP Ryan. SPIE Press. 2009; 7181: 1–15
  • Pisa S, Cavagnaro M, Bernardi P, Lin JC. A 915-MHz antenna for microwave thermal ablation treatment: Physical design, computer modeling and experimental measurement. IEEE Trans Biomed Eng 2001; 48: 599–601
  • Yu Z, Liu W, Fan L, Shao J, Huang Y, Si X. The efficacy and safety of percutaneous microwave coagulation by a new microwave delivery system in large hepatocellular carcinomas: Four case studies. Int J Hyperthermia 2009; 25: 392–398
  • Simon CJ, Dupuy DE, Iannitti DA, Lu DS, Yu NC, Aswad BI, Busuttil RW, Lassman C. Intraoperative triple antenna hepatic microwave ablation. Am J Roentgen 2006; 187: 333–340
  • Bertram JM, Yang D, Converse MC, Webster JG, Mahvi DM. A review of coaxial-based interstitial antennas for hepatic microwave ablation. Crit Rev Biomed Eng 2006; 34: 187–213
  • Scheiblich J, Petrowicz O. Radiofrequency-induced hyperthermia in the prostate. J Microw Power 1982; 17: 203–209
  • Leib Z, Rothem A, Lev A, Servadio C. Histopathological observations in the canine prostate treated by local microwave hyperthermia. Prostate 1986; 8: 93–102
  • Sherar MD, Trachtenberg J, Davidson SR, Gertner MR. Interstitial microwave thermal therapy and its application to the treatment of recurrent prostate cancer. Int J Hyperthermia 2004; 20: 757–868
  • Sherar MD, Trachtenberg J, Davidson SR, McCann C, Yue CK, Haider MA, Gertner MR. Interstitial microwave thermal therapy for prostate cancer. J Endourology 2003; 8: 617–625
  • Tierney M, diMonda R. Organ separation for thermal therapy. US Patent No. 5,733,316, 1998.
  • Eppert V, Trembly BS, Richter HJ. Air cooling for an interstitial microwave hyperthermia antenna: Theory and experiment. IEEE Trans Biomed Eng 1991; 38: 450–460
  • Trembly BS, Douple EB, Hoopes PJ. The effect of air cooling on the radial temperature distribution of a single microwave hyperthermia antenna in vivo. Int J Hyperthermia 1991; 7: 343–354
  • Johnson CC, Guy AW. Nonionizing electromagnetic wave effects in biological materials and systems. Proc IEEE 1972; 60: 692–718
  • Wong TZ, Strohbehn JW, Jones KM, Mechling JA, Trembly BS. SAR patterns from an interstitial microwave antenna-array hyperthermia system. IEEE Trans Microw Theory Tech 1986; 34: 560–567
  • Jones KM, Mechling JA, Strohbehn JW, Trembly BS. Theoretical and experimental SAR distributions for interstitial dipole antenna arrays used in hyperthermia. IEEE Trans Microwave Theory Tech 1989; 37: 1200–1209
  • Waterman FM, Nerlinger RE. The effect of coupling materials on specific absorption rate distributions at 915 MHz. Med Phys 1986; 13: 391–395
  • Chou CK. Evaluation of microwave hyperthermia applicators. Bioelectromagnetics 1992; 13: 581–597
  • Diederich CJ, Stauffer PR. Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia. Int J Hyperthermia 1993; 9: 227–246
  • Diederich CJ. Thermal ablation and high-temperature thermal therapy: Overview of technology and clinical implementation. Int J Hyperthermia 2005; 21: 745–753
  • Garrean S, Hering J, Saeid A, Hoopes PJ, Helton WS, Ryan TP, Espat NJ. Ultrasound monitoring of a novel microwave ablation (MWA) device in porcine liver: Lessons learned and phenomena observed on ablative effects near major hepatic vessels. J Gastorintest Surg 2009; 13: 334–340
  • Strickland AD, Clegg PJ, Cronin NJ, Swift B, Festing M, West KP, Robertson GS, Lloyd DM. Experimental study of large-volume microwave ablation in the liver. Br J Surg 2002; 89: 1003–1007
  • Awad ME, Devgan L, Kamel IR, Torbensen M, Choti MA. Microwave ablation in a hepatic porcine model: Correlation of CT and histopathologic findings. HPB 2007; 9: 357–362
  • Hope WW, Schmelzer TM, Newcomb WL, Heath JJ, Lincourt AE, Norton HJ, Heniford BT, Iannitti DA. Guidelines for power and time variables for microwave ablation in a porcine liver. J Gastrointest Surg 2008; 12: 463–467
  • Laeseke PF, Lee FT, Jr, Sampson LA, van der Weide DW, Brace CL. Microwave ablation versus radiofrequency ablation in the kidney: High-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes. J Vasc Interv Radiol 2009; 20: 1224–1229
  • Bhardwaj N, Strickland AD, Ahmad F, Atanesyan L, West K, Lloyd DM. A comparative histological evaluation of the ablations produced by microwave, cryotherapy and radiofrequency in the liver. Pathology 2009; 41: 168–172
  • Brace CL, Hinshaw JL, Laeseke PF, Sampson LA, Lee FT, Jr. Pulmonary thermal ablation: Comparison of radiofrequency and microwave devices by using gross pathologic and CT findings in a swine model. Radiology 2009; 251: 705–711
  • Gravante G, Ong SL, Metcalfe MS, Strickland A, Dennison AR, Lloyd DM. Hepatic microwave ablation: A review of the histological changes following thermal damage. Liver Int 2008; 28: 911–921
  • Martin RC, Scoggins CR, McMasters KM. Microwave hepatic ablation: Initial experience of safety and efficacy. J Surg Oncol 2007; 96: 481–486
  • Wang ZL, Liang P, Dong BW, Yu XL, Yu de J. Prognostic factors and recurrence of small hepatocellular carcinoma after hepatic resection or microwave ablation: A retrospective study. J Gastrointest Surg 2008; 2: 327–337
  • Jagad RB, Koshariya M, Kawamoto J, Papastratis P, Kefalourous H, Patris V, Porfiris T, Gevrielidis P, Tzouma C, Lygidakis NJ. Laparoscopic microwave ablation of liver tumors: Our experience. Hepatogastroenterology 2008; 55: 27–32
  • Wasser EJ, Dupuy DE. Microwave ablation in the treatment of primary lung tumors. Semin Respir Crit Care Med 2008; 29: 384–394
  • Ong SL, Gravante G, Metcalfe MS, Strickland AD, Dennison AR, Lloyd DM. Efficacy and safety of microwave ablation for primary and secondary liver malignancies: A systematic review. Eur J Gastroenterol Hepatol 2009; 21: 599–605
  • Ohmoto K, Yoshioka N, Tomiyama Y, Shibata N, Kawase T, Yoshida K, Kuboki M, Yamamoto S. Comparison of therapeutic effects between radiofrequency ablation and percutaneous microwave coagulation therapy for small hepatocellular carcinomas. J Gastroenterol Hepatol 2009; 24: 223–227
  • Yin XY, Xie XY, Lu MD, Xu HX, Xu ZF, Kuang M, Liu GJ, Liang JY, Lau WY. Percutaneous thermal ablation of medium and large hepatocellular carcinoma: Long-term outcome and prognostic factors. Cancer 2009; 115: 1914–1923
  • Turner PF, Youd T, Turner PS. Advances and historical developments of MW hyperthermia and the relevance to thermal ablation. Proc SPIE 2007; 1–9
  • Chen CC, Miga MI, Galloway RL, Jr. Optimizing electrode placement using finite-element models in radiofrequency ablation treatment planning. IEEE Trans Biomed Eng 2009; 56: 237–245
  • Hines-Peralta A, Pirani N, Clegg P, Cronin N, Ryan TP, Liu Z, Goldberg SN. Microwave ablation: Results with a 2.45 GHz applicator in ex-vivo bovine and in-vivo porcine liver. Radiology 2006; 239: 94–102
  • Mertyna P, Hines-Peralta A, Liu ZJ, Halpern E, Goldberg W, Goldberg SN. Radiofrequency ablation: Variability in heat sensitivity in tumors and tissues. J Vasc Interv Radiol 2007; 18: 647–654
  • Turner, P. Practice and technology for interstitial hyperthermia. ACRO Practice Management Guide; 2008: Chapter 20.
  • Chen MH, Yang W, Yan K, Zou MW, Solbiati L, Liu JB, Dai Y. Large liver tumors: Protocol for radiofrequency ablation and its clinical application in 110 patients–Mathematical model, overlapping mode, and electrode placement process. Radiology 2004; 232: 260–271
  • Moore JE, Zouridakis G. Biomedical technology and devices handbook. CRC Press, Boca Raton, FL 2003; 31–32
  • Chin L, Sherar M. Changes in dielectric properties of ex vivo bovine liver at 915 MHz during heating. Phys Med Biol 2001; 46: 197–211
  • Iannitti DA, Martin RCG, Simon CJ, Hope WW, Newcomb WL, McMasters KM, Depuy D. Hepatic tumor ablation with clustered microwave antennae: The US Phase II trial. HPB 2007; 9: 120–124
  • Schram W, Yang D, Wood BJ, Rattney F, Haemmerich D. Contribution of direct heating, thermal conduction and perfusion during radiofrequency and microwave ablation. Open Biomed Eng J 2007; 1: 47–52
  • Boutros C, Somasundar P, Garrean S, Saied A, Espat NJ. Microwave coagulation therapy for hepatic tumors: Review of the literature and critical analysis. Surg Oncol 2009; 18: 269–288
  • Wolf FJ, Grand DJ, Machan JT, DiPetrillo TA, Mayo-Smith WW, Depuy DE. Microwave ablation of lung malignancies: Effectiveness, CT findings and safety in 50 patients. Radiology 2008; 247: 871–879
  • Zhai W, Xu J, Zhao Y, Song Y, Sheng L, Jia P. Preoperative surgery planning for percutaneous hepatic microwave ablation. Med Image Comput Assist Interv 2008; 11: 569–577
  • Lygidakis NJ, Sharma SK, Papastratis P, Zivanovic V, Kefalourous H, Koshariya M, Lintzeris I, Porfiris T, Koutsiouroumba D. Microwave ablation in locally advanced pancreatic carcinoma–A new look. Hepatogastroenterology 2007; 54: 2123–2128
  • Wright AS, Lee FT, Mahvi DM. Hepatic microwave ablation with multiple antennae results in synergistically larger zones of coagulation necrosis. Ann Surg Oncol 2003; 10: 275–283
  • Cheung AY. Microwave and radiofrequency techniques for clinical hyperthermia. Br J Cancer 1982; 45: 16–24
  • Trembly BS, Douple EB, Ryan TP, Hoopes PJ. Effect of phase modulation on the temperature distribution of a microwave hyperthermia antenna array in vivo. Int J Hyperthermia 1994; 10: 691–705
  • Debicki P, Astrahan MA, Ameve F, Oven R, Baert L, Haczewski A, Pertovich Z. Temperature steering in prostate by simultaneous transurethral and transrectal hyperthermia. Urology 1992; 40: 300–307
  • Camart JC, Dubois L, Fabre JJ, Vanloot D, Chive M. 915 MHZ microwave interstitial hyperthermia. Part II: Array of phase-monitored antennas. Int J Hyperthermia 1993; 9: 445–454
  • Clibbon KL, McCowen A, Hand JW. SAR distributions in interstitial microwave antennas with a single dipole displacement. IEEE Trans Biomed Eng 1993; 40: 925–932
  • Zhang Y, Joines WT, Oleson JR. Heating patterns generated by phase modulation of a hexagonal array of interstitial antennas. IEEE Trans Biomed Eng 1991; 38: 92–97
  • Stauffer PR, Diederich CJ, Seegenschmiedt MH. Interstitial heating technologies. Thermo-radiotherapy and thermo-chemotherapy, volume 1. Biology, physiology, and physics, MH Seegenschmiedt, P Fessenden, CC Vernon. Springer, Berlin 1995; 279–320
  • Arora D, Minor MA, Skliar M, Roamer RB. Control of thermal therapies with moving power deposition field. Phys Med Biol 2006; 51: 1201–1209
  • Phasukkit P, Tungjitkusolmun S, Sangworasil M. Finite element analysis and in vitro experiments of placement configurations using triple antennas in microwave hepatic ablation. IEEE Trans Biomed Eng 2009; 56: 2564–2572
  • Shapiro J. Radiation protection: A guide for scientists, regulators, and physicians, 4th edn. Harvard Univ. Press, Cambridge, MA 2002
  • Liu RL, Zhang EY, Gross EJ, Cetas TC. Heating pattern of helical microwave intracavitary oesophageal applicator. Int J Hyperthermia 1991; 7: 577–586
  • Petrowicz O, Heinkelmann W, Erhardt W, Wriedt-Lübbe I, Hepp W, Blümel G. Experimental studies on the use of microwaves for the localized heat treatment of the prostate. J Microw Power 1979; 14: 167–171
  • Dadd JS, Ryan TP, Platt R. Tissue impedance as a function of temperature and time. Biomed Sci Instrum 1996; 32: 205–214
  • Lindner A, Golomb J, Siegel Y, Lev A. Local hyperthermia of the prostate gland for the treatment of benign prostatic hypertrophy and urinary retention. A preliminary report. Br J Urol 1987; 60: 567–571
  • Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 1984; 10: 767–800
  • Goldberg SN, Gazelle GS, Solbiati L, Rittman WJ, Mueller PR. Radiofrequency tissue ablation: Increased lesion diameter with a perfusion electrode. Acad Radiol 1996; 3: 636–644
  • He X, Bischof JC. The kinetics of thermal injury in human renal carcinoma cells. Ann Biomed Eng 2005; 33: 502–510
  • Sato K, Morikawa S, Inubushi T, Kurumi Y, Naka S, Haque HA, Demura K, Tani T. Alternate bipolar MR navigation for microwave ablation of liver tumors. Magn Reson Med Sci 2005; 4: 89–94
  • Kurami Y, Tani T, Naka S, Shiomi H, Shimizu T, Abe H, Endo Y, Morikawa S. MR guided microwave ablation for malignancies. Int J Clin Oncol 2007; 12: 85–93

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.