2,345
Views
46
CrossRef citations to date
0
Altmetric
Research Articles

Mathematical models of laser-induced tissue thermal damage

, PhD
Pages 741-750 | Received 01 Mar 2011, Accepted 11 Apr 2011, Published online: 18 Nov 2011

References

  • Administration UFaD. US Department of Health and Human Services search page, 2010. Available from: http://google2.fda.gov/search? (accessed 15 February 2010)
  • Ablative. Webster's New World Dictionary, 2nd edn. New York: Simon & Schuster, 1982
  • Keenan JH, Keyes FG. Thermodynamic Properties of Steam. Wiley, New York 1936
  • Konig K. Multiphoton microscopy in life sciences. J Microscopy 2000; 200: 83–104
  • Cheong WF, Prahl SA, Welch AJ. A review of the optical properties of biological tissues. IEEE J Quantum Electronics 1990; 26: 2166–2185
  • Elliott AM, Shetty AM, Wang J, Hazle JD, Jason Stafford R. Use of gold nanoshells to constrain and enhance laser thermal therapy of metastatic liver tumours. Int J Hyperthermia 2010; 26: 434–40
  • Baffou G, Quidant R, Girard C. Heat generation in plasmonic nanostructures: Influence of morphology. Appl Phys Lett 2009; 94: 153109
  • Cardinal J, Klune JR, Chory E, Jeyabalan G, Kanzius JS, Nalesnik M, Geller DA. Noninvasive radiofrequency ablation of cancer targeted by gold nanoparticles. Surgery 2008; 144: 125–132
  • Shenoi MM, Anderson JK, Bischof JC. Nanoparticle enhanced thermal therapies. Conference Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine. Minneapolis: EMBC 2009; 1979–1982
  • Schwartz JA, Shetty AM, Price RE, Stafford RJ, Wang JC, Uthamanthil RK, Pham K, McNichols RJ, Coleman CL, Payne JD. Nanoparticle-assisted photothermal ablation of brain tumor in an orthotopic canine model. Photonic Therapeutics and Diagnostics V, N Kollias, B Choi, H Zeng, RS Malek, BJ Wong, JFR Ilgner, KW Gregory, GJ Tearney, L Marcu, H Hirschberg, et al. SPIE, San Jose, CA 2009
  • Govorov AO, Zhang W, Skeini T, Richardson H, Lee J, Kotov NA. Gold nanoparticle ensembles as heaters and actuators: Melting and collective plasmon resonances. Nanoscale Res Lett 2006; 1: 84–90
  • Wider TM, Libutti SK, Greenwald DP, Oz MC, Yager JS, Treat MR, Hugo NE. Skin closure with dye-enhanced laser welding and fibrinogen. Plast Reconstr Surg 1991; 88: 1018–1025
  • Sedlmaier B, Franke A, Sudhoff H, Jovanovic S, Haisch A. Photodynamic effect of argon and diode laser on cholesteatoma cell cultures after intravital staining with absorption enhancers. Lasers Med Sci 2005; 19: 248–256
  • Jacques SL, Wang L. Monte Carlo modeling of light transport in tissues. Optical-Thermal Response of Laser-Irradiated Tissue, AJ Welch, MJC van Gemert. Plenum, New York 1995; 73–100
  • Pearce JA. Cover Illustration. Medical instrumentation. J Assoc Adv Med Instrum 1984; 18: 248
  • Hale GM, Querry MR. Optical constants of water in the 200 nm to 200 um wavelength region. Appl Optics 1973; 12: 555–563
  • Skripov VP. Metastable Liquids. Halstead Press, New York 1974
  • Gerum E, Straub J, Grigull U. Examination of the metastable state of liquids. Heat Transfer in Boiling, E Hahne, U Grigull. Academic Press, New York 1977; 453–469
  • Pearce JA, Thomsen S. Rate process analysis of thermal damage. Optical-Thermal Response of Laser-Irradiated Tissue, AJ Welch, MJC vanGemert. Plenum, New York 1995; 561–606
  • Pearce JA, Models for thermal damage in tissues: Processes and applications. Crit Rev Biomed Eng 2010;38: 1–20
  • Arrhenius S. Uber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Sauren (About the Reaction Rate in the Inversion of Cane Sugar by Acids). Z Phys Chem 1889; 4: 226–248
  • Johnson FH, Eyring H, Stover BJ. The Theory of Rate Processes in Biology and Medicine. Wiley, New York 1974
  • Sapareto SA, Hopwood LE, Dewey WC. Combined effects of X irradiation and hyperthermia on CHO cells for various temperatures and orders of application. Radiat Res 1978; 73: 221–233
  • Moritz AR. Studies of thermal injury III. The pathology and pathogenesis of cutaneous burns: An experimental study. Am J Pathology 1947; 23: 915–934
  • Moritz AR, Henriques FC. Studies of thermal injury II: The relative importance of time and surface temperature in the causation of cutaneous burns. Am J Pathology 1947; 23: 695–720
  • Henriques FC. Studies of thermal injury V. The predictability and significance of thermally induced rate processes leading to irreversible epidermal injury. Arch Pathol 1947; 43: 489–502
  • Henriques FC, Moritz AR. Studies of thermal injury in the conduction of heat to and through skin and the temperatures attained therein: A theoretical and experimental investigation. Am J Pathol 1947; 23: 531–549
  • Eyring H, Stearn AE. The application of the theory of absolute reaction rates to proteins. Chem Rev 1939; 24: 253–270
  • Wright NT. On a relationship between the Arrhenius parameters from thermal damage studies. J Biomech Eng 2003; 125: 300–304
  • Miles CA, Ghelashvili M. Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys J 1999; 76: 3243–3252
  • He X, Bischof JC. Quantification of temperature and injury response in thermal therapy and cryosurgery. Crit Rev Biomed Eng 2003; 31: 355–421
  • He X, Bhowmick S, Bischof JC. Thermal therapy in urologic systems: A comparison of Arrhenius and thermal isoeffective dose models in predicting hyperthermic injury. J Biomech Eng 2009; 131–745071
  • Thomsen S, Pearce JA, Cheong WF. Changes in birefringence as markers of thermal damage in tissues. IEEE Trans Biomed Eng 1989; 36: 1174–1179
  • Pearce JA, Thomsen SLMD, Vijverberg H, McMurray TJ. Kinetics for birefringence changes in thermally coagulated rat skin collagen. Proc SPIE, 1993; 1876: 180–186
  • Maitland DJ, Walsh Jr JT, Intensity-based feedback of the thermally induced denaturation of collagen. Paper presented at the 17th Annual Conference of IEEE Engineering in Medicine and Biology, Montreal, Canada, 1995, pp. 1735–1736
  • Maitland DJ, Walsh JT, Jr. Quantitative measurements of linear birefringence during heating of native collagen. Lasers Surg Med 1997; 20: 310–318
  • Vlasak JW, Kopchok GE, White RA. Laser-assisted intestinal anastomosis. Lasers Surg Med 1988; 8: 573–578
  • Wonneberger U, Schnackenburg B, Wlodarczyk W, Rump J, Walter T, Streitparth F, Teichgräber UK. Evaluation of thermometric monitoring for intradiscal laser ablation in an open 1.0 T MR scanner. Int J Hyperthermia. 2010; 26: 295–304
  • Pearce JA, Cilesiz I, Welch AJ, Chan EK, McMurray TJ, Thomsen SLMD. Comparison of Ho:YAG, Tm:YAG, and argon lasers for fusion of intestinal tissues. SPIE, Los Angeles, CA 1994; 517–526
  • Kilkelly FX, Choma TJ, Popovic N, Miller DW, Sweet DE. Tendon repair by laser welding: A histologic and biomechanical comparison and suture repair with CO2 and argon lasers. Lasers Surg Med 1996; 19: 487–491
  • Lemole GM, Anderson RR, DeCoste S. Preliminary evaluation of collagen as a component in the thermally induced ‘weld’. SPIE, Los Angeles, CA 1991; 116–122
  • Neblett CR, Morris JR, Thomsen S. Laser assisted microsurgical anastomosis. Neurosurgery. 1986; 19: 914–934
  • Schober R, Ulrich F, Sander T, Durselen H, Hessel S. Laser-induced alteration of collagen substructure allows microsurgical tissue welding. Science 1986; 232: 1421–1422
  • Treat MR, Mehmet CO, Bass LS. New technologies and future applications of surgical lasers. Surg Clin N Am 1992; 72: 705–742
  • Vlasak JW, Kopchok GE, White RA. Closure of rabbit ileum enterotomies with the argon and CO2 lasers: Bursting pressures and histology. Lasers Surg Med 1988; 8: 527–532
  • Majaron B, Plestenjak P, Lukac M. Quantitative investigation of thermal damage in Er:YAG laser skin resurfacing. Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems Conference VIII. Proc SPIE 1998; 3245: 366–373
  • Pearce JA. Corneal reshaping by radio frequency current: Numerical model studies. Thermal Treatment of Tissue: Energy Delivery and Assessment. Proc SPIE 2001; 4247: 109–118
  • Pearce JA, Ikei C. Increasing corneal curvature by RF current: Numerical model studies of governing physical processes. Thermal Treatment of Tissue: Energy Delivery and Assessment IV. Proc SPIE 2007; 6440, DOI:10.1117/12.702874
  • Pham L, Pope K. 3D finite element model of RF heating: Novel non-ablative cutaneous therapy. Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XIII. Proc SPIE 2003; 49: 22–31
  • Tunnell JW, Stern RA, Pope K. RF non-ablative cutaneous thermal therapy. Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XII. Proc SPIE 2002; 4609: 75–82
  • Pertaub R, Ryan TP. Numerical model and analysis of an energy-based system using microwaves for vision correction. Energy-based Treatment of Tissue and Assessment V. Proc SPIE, 2009; 7181: 5–14
  • Yetkinler D, Bessette A, Woloszko J. A novel radiofrequency technology (Coblation®) for dermatologic surgery applications. Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XII. Proc SPIE 2002; 4609: 276–283
  • Kampmeier J, Brinkmann R, Pfleiderer M, Schneider E, Birngruber R. A biomechanical basis for laser thermokeratoplasty. Lasers in Ophthalmology IV. Proc SPIE 1996; 2930: 25–32
  • Longo L, Piccinetti AL, Monarche GD, Botta G, Mancini S. Laser treatment of stretch marks: Preliminary results. Laser Florence ’99: A Window on the Laser Medicine World. Proc SPIE 2000; 4166: 164–168
  • Chen SS, Wright NT, Humphrey JD. Heat-induced changes in the mechanics of a collagenous tissue: Isothermal free shrinkage. J Biomech Eng 1997; 119(4)372–378
  • Chen SS, Wright NT, Humphrey JD. Heat-induced changes in the mechanics of a collagenous tissue: Isothermal, isotonic shrinkage. J Biomech Eng 1998; 120: 382–388
  • Chen SS, Wright NT, Humphrey JD. Phenomenological evolution equations for heat-induced shrinkage of a collagenous tissue. IEEE Trans Biomed Eng 1998; 45: 1234–1240
  • Kopchok GE, White RA, White GH, Fujitani R, Vlasak J, Dykhovsky L, Grundfest WS. CO2 and argon laser vascular welding: Acute histologic and thermodynamic comparison. Lasers Surg Med 1988; 8: 584–588
  • Lepock JR, Frey HE, Bayne H, Markus J. Relationship of hyperthermia-induced hemolysis of human erythrocytes to the thermal denaturation of membrane proteins. Biochim Biophys Acta 1989; 980: 191–201
  • Flock ST, Smith L, Waner MD. Quantifying the effects on blood of irradiation with four different vascular-lesion lasers. Laser–Tissue Interaction IV. Proc SPIE 1993; 1882: 237–243
  • Moussa NA, Tell EN, Cravalho EG. Time progression of hemolysis of erythrocyte populations exposed to supraphysiological temperatures. J Biomech Eng 1979; 101: 213–217
  • Przybylska M, Bryszewska M, KedzioraKedziora J. Thermosensitivity of red blood cells from Down's syndrome individuals. Bioelectrochemistry 2000; 52: 239–249
  • Pfefer TJ, Choi B, Vargas G, McNally KM, Welch AJ. Pulsed laser-induced thermal damage in whole blood. J Biomech Eng 2000; 122: 196–202
  • Diller KR, Klutke GA. Accuracy analysis of the Henriques model for predicting thermal burn injury. Advances in Bioheat Mass Transfer, ASME Heat Transfer Division. American Society of Mechanical Engineers, New York 1993; 117–123
  • Brown SL, Hunt JW, Hill RP. Differential thermal sensitivity of tumour and normal tissue microvascular response during hyperthermia. Int J Hyperthermia 1992; 8: 501–504
  • Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM. Hyperthermia in combined treatment of cancer. Lancet Oncology 2002; 3: 487–497, [Review]
  • Krysko DV, Vandenabeele P. Clearance of dead cells: Mechanisms, immune responses and implication in the development of diseases. Apoptosis 2010; 15: 995–997
  • Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: An ordered cellular explosion. Nature Reviews Molecular Cell Biology 2010; 11: 700–714
  • Eriksson JE, Vandenabeele P. Workshop summary: Cell death mechanisms controlled by the TNF family. Adv Exp Med Biol 2011; 691: 585–588
  • Remijsen Q, Vanden Berghe T, Wirawan E, Asselbergh B, Parthoens E, De Rycke R, Noppen S, Delforge M, Willems J, Vandenabeele P. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Research 2011; 21: 290–304
  • Bernardi P, Scorrano L, Colonna R, Petronilli V, Di Lisa F. Mitochondria and cell death. Mechanistic aspects and methodological issues. Eur J Biochem 1999; 264: 687–701
  • Thomsen S. The art and science of low-energy applications: Pathology perspectives. Thermal Treatment of Tissue: Energy Delivery and Assessment VI. Proc SPIE 2011; 790102, DOI: 10.1117/12.877565
  • Bhowmick P, Coad JE, Bhowmick S, Pryor JL, Larson T, de la Rosette J, Bischof JC. In vitro assessment of the efficacy of thermal therapy in human benign prostatic hyperplasia. Int J Hyperthermia 2004; 20: 412–439
  • McMillan K. 1125-nm quantum dot laser for tonsil thermal therapy. Thermal Treatment of Tissue: Energy Delivery and Assessment VI. Proc SPIE 2011; 79010X, DOI 10.1117/12.876321
  • Rabin Y, Julian TB, Olson P, Taylor MJ, Wolmark N. Cryosurgery for breast malignancies: Apparatus and techniques. Advances in Heat and Mass Transfer, ASME Heat Transfer Division. ASME. 1999; 65–69
  • Sommer G, Butts K, Bouley D, Daniel B, Ross T, Nau W, Diederich C. Correlation of real-time MRTI and post-treatment MRI with histologic depiction of prostatic ablation using high-intensity ultrasound. Proc Intl Soc Mag Reson Med 2004; 477
  • Aksan A, McGrath JJ, Nielubowicz DSJ. Thermal damage prediction for collagenous tissues part I: A clinically relevant numerical simulation incorporating heating rate dependent denaturation. J Biomech Eng 2005; 127: 85–97
  • Miles CA. Kinetics of collagen denaturation in mammalian lens capsules studied by differential scanning calorimetry. Int J Biol Macrobiol 1993; 15: 265–271
  • Jacques SL, Gaeeni MO. Thermally induced changes in optical properties of heart. IEEE Eng Med Biol Mag 1989; 1199–1200
  • Sapareto SA, Hopwood LE, Dewey WC, Raju MR, Gray JW. Effects of hyperthermia on survival and progression of Chinese hamster ovary cells. Cancer Research 1978; 38: 393–400
  • Bhowmick S, Swanlund DJ, Bischof JC. Supraphysiological thermal injury in Dunning AT-1 prostate tumor cells. J Biomech Eng 2000; 122: 51–59
  • Borrelli MJ, Thompson LL, Cain CA, Dewey WC. Time–temperature analysis of cell killing of BhK cells heated at temperatures in the range of 43.5°C to 57.0°C. Int J Radiat Oncol Biol Phys 1990; 19: 389–399
  • He X, Bischof JC. The kinetics of thermal injury in human renal carcinoma cells. Ann Biomed Eng 2005; 33: 502–510
  • Nandall SD, Arora MA, Schiffter HA, Coussios CC. On the applicability of the thermal dose cumulative equivalent minutes metric to the denaturation of bovine serum albumin in a polyacrylamide tissue phantom. Eighth International Symposium on Therapeutic Ultrasound, AS Ebbini. American Institute of Physics, New York 2009; 205–209

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.