3,555
Views
116
CrossRef citations to date
0
Altmetric
Articles

Comparative analysis of mathematical models of cell death and thermal damage processes

Pages 262-280 | Received 18 Jul 2012, Accepted 12 Mar 2013, Published online: 05 Jun 2013

References

  • Dewey WC, Hopwood LE, Sapareto SA, Gerweek LE. Cellular responses to combinations of hyperthermia and radiation. Radiology 1977;123:463–74
  • Sapareto SA, Hopwood LE, Dewey WC. Combined effects of X irradiation and hyperthermia on CHO cells for various temperatures and orders of application. Radiat Res 1978;73:221–33
  • Sapareto SA. The biology of hyperthermia in vitro. In: Nussbaum GH, editor. Physical aspects of hyperthermia. New York, NY: American Institute of Physics; 1982. 1–16
  • Henriques FC. Studies of thermal injury, V. The predictability and significance of thermally induced rate processes leading to irreversible epidermal injury. Arch Pathol 1947;43:489–502
  • Henriques FC, Moritz AR. Studies of thermal injury in the conduction of heat to and through skin and the temperatures attained therein: A theoretical and experimental investigation. Am J Pathol 1947;23:531–49
  • Moritz AR. Studies of thermal injury III. The pathology and pathogenesis of cutaneous burns: An experimental study. Am J Pathol 1947;23:915–34
  • Moritz AR, Henriques FC. Studies in thermal injury II: The relative importance of time and surface temperature in the causation of cutaneous burns. Am J Pathol 1947;23:695–720
  • Fugitt CH. A rate process theory of thermal injury. In: Weapons Effect Division, Armed Forces Special Weapons Project Report, AFSWP-606. Washington, DC; 1955, 43 pages
  • Weaver JA, Stoll AM. Mathematical model of skin exposed to thermal radiation. Aerospace Med 1967;40:24–30
  • Pearce JA, Thomsen S. Rate process analysis of thermal damage. In: Welch AJ, van Gemert MJC, editors. Optical-thermal response of laser-irradiated tissue. New York: Plenum; 1995. 561–606
  • Diller KR, Valvano JW, Pearce JA. Bioheat transfer. In: Kreith F, editor. CRC handbook of thermal engineering. Boca Raton: CRC; 2000. 114–215
  • Pearce JA. Models for thermal damage in tissues: Processes and applications. Crit Rev Biomed Eng 2010;38:1–20
  • Thomsen SL, Pearce JA. Thermal damage and rate processes in biologic tissues. In: Welch AJ, van Gemert MJC, editors. Optical-thermal response of laser-irradiated tissue. 2nd ed. Dordrecht, Netherlands: Springer; 2011. 487–549
  • He X, Bhowmick S, Bischof JC. Thermal therapy in urologic systems: A comparison of Arrhenius and thermal isoeffective dose models in predicting hyperthermic injury. J Biomech Eng 2009;131:745071
  • Nadall SD, Arora MA, Schiffter HA, Coussios CC. On the applicability of the thermal dose cumulative equivalent minutes metric to the denaturation of bovine serum albumin in a polyacrylamide tissue phantom. In: Ebbini AS, editor. 8th international symposium on therapeutic ultrasound; 2009. Minneapolis, MN: American Institute of Physics; 2009. 205–9
  • Mackey M, Roti Roti JL. A model of heat-induced clonogenic cell death. J Theor Biol 1992;156:133–46
  • O’Neill DP, Peng T, Stiegler P, Mayrhauser U, Koestenbauer S, Tscheliessnigg K, et al. A three-state mathematical model of hyperthermic cell death. Ann Biomed Eng 2011;39:570–79
  • Feng Y, Oden JT, Rylander MN. A two-state cell damage model under hyperthermic conditions: Theory and in vitro experiments. J Biomech Eng 2008;130:041016
  • Eissing T, Conzelmann H, Gilles ED, Allgower F, Bullinger E, Scheurich P. Bistability analyses of a caspase activation model for receptor-induced apoptosis. J Biol Chem 2004;279:36892–7
  • Sapareto SA, Hopwood LE, Dewey WC, Raju MR, Gray JW. Effects of hyperthermia on survival and progression of Chinese hamster ovary cells. Cancer Res 1978;38:393–400
  • Lepock JR, Kruuv J. Thermotolerance as a possible cause of the critical temperature at 43° in mammalian cells. Cancer Res 1980;40:4486–8
  • Shapiro HM. Practical flow cytometry. 4th ed. New York: Wiley-Liss; 2003
  • Overgaard J. Effect of hyperthermia on malignant cells in vivo. A review and a hypothesis. Cancer 1977;39:2637–46
  • Leith JT, Miller RC, Gerner EW, Boone ML. Hyperthermic potentiation: Biological aspects and applications to radiation therapy. Cancer 1977;39:766–79
  • Ross-Riveros P, Leith JT. Response of 9L tumor cells to hyperthermia and X irradiation. Radiat Res 1979;78:296–311
  • Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia 2003;19:267–94
  • Arrhenius S. Uber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Sauren (On the reaction rate in the inversion of cane sugar by acids). Z Phys Chem 1889;4:226–48
  • Johnson FH, Eyring H, Stover BJ. The theory of rate processes in biology and medicine. New York: Wiley; 1974
  • Arrhenius S. Quantitative laws in biological chemistry. London: Bell; 1915
  • Yarmolenko PS, Moon EJ, Landon C, Manzoor A, Hochman DW, Viglianti BL, et al. Thresholds for thermal damage to normal tissues: An update. Int J Hyperthermia 2011;27:320–43
  • Pearce JA. Relationship between Arrhenius models of thermal damage and the CEM 43 thermal dose. Energy-based treatment of tissue and assessment V. Proc SPIE 2009;718104:1–15. doi:10.1117/12.807999
  • Eyring H, Gershinowitz H, Sun CE. The absolute rate of homogeneous atomic reactions. J Chem Phys 1935;3:786–96
  • Wynne-Jones WFK, Eyring H. The absolute rate of reactions in condensed phases. J Chem Phys 1935;3:492–502
  • Laidler KJ, King MC. The development of transition-state theory. J Chem Phys 1983;87:2657–64
  • Eyring H, Polyani M. Über Einfache Gasreaktionen (On simple gas reactions). Z Phys Chem B 1931;12:279–311
  • Eyring H. The activated complex in chemical reactions. J Chem Phys 1935;3:107–15
  • Maron SH, Lando JB. Fundamentals of physical chemistry. New York: Macmillan; 1974
  • Eyring H. The energy of activation for bimolecular reactions involving hydrogen and the halogens, according to quantum mechanics. J Am Chem Soc 1931;53:2537–49
  • Diller KR, Klutke GA. Accuracy analysis of the Henriques model for predicting thermal burn injury. In: Roemer, RB, editor. Advances in bioheat and mass transfer. New York: ASME; 1993. 117–23
  • Thomsen S, Pearce JA, Cheong WF. Changes in birefringence as markers of thermal damage in tissues. IEEE Trans Biomed Eng 1989;36:1174–9
  • Pearce JA, Thomsen SLMD, Vijverberg H, McMurray TJ. Kinetics for birefringence changes in thermally coagulated rat skin collagen; Los Angeles, CA. Bellingham, WA, USA: Proc. Society of Photo-Optical Instrumentation Engineers; 1993. 180–6
  • Maitland DJ, Walsh JT Jr. Quantitative measurements of linear birefringence during heating of native collagen. Lasers Surg Med 1997;20:310–18
  • Pearce JA, Thomsen S. The effect of vessel architecture on fusion by radio frequency current. surgical applications of energy. San Jose, CA: SPIE; 1998. 217–28
  • Chen SS, Wright NT, Humphrey JD. Heat-induced changes in the mechanics of a collagenous tissue: Isothermal free shrinkage. J Biomech Eng 1997;119:372–8
  • Chen SS, Wright NT, Humphrey JD. Heat-induced changes in the mechanics of a collagenous tissue: Isothermal, isotonic shrinkage. J Biomech Eng 1998;120:382–8
  • Chen SS, Wright NT, Humphrey JD. Phenomenological evolution equations for heat-induced shrinkage of a collagenous tissue. IEEE Trans Biomed Eng 1998;45:1234–40
  • Pearce JA. Corneal Reshaping by Radio Frequency Current: Numerical Model Studies. Thermal Treatment of Tissue: Energy Delivery and Assessment. Proc SPIE 2001;4247:109–18. doi:10.1117/12.427850
  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell. 5th ed. New York: Garland Science; 2008
  • Vanden Berghe T, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Diff 2010;17:922–30
  • Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: An ordered cellular explosion. Nature Rev Mol Cell Biol 2010;11:700–14
  • Wrighton KH. Cell death: A killer puts a stop on necroptosis. Nat Rev Mol Cell Biol 2011;12:279
  • Weinberg WA. The biology of cancer. New York: Garland Science; 2007
  • Zhang Y, Calderwood SK. Autophagy, protein aggregation and hyperthermia: A mini-review. Int J Hyperthermia 2011;27:409–14
  • Bergsbaken T, Fink SL, den Hartigh AB, Loomis WP, Cookson BT. Coordinated host responses during pyroptosis: Caspase-1-dependent lysosome exocytosis and inflammatory cytokine maturation. J Immunol 2011;187:2748–54
  • Mathews CK, van Holde KE, Appling DR, Anthony-Cahill SJ. Biochemistry. 4th ed. Toronto: Pearson; 2013
  • Deveraux QL, Reed JC. IAP family proteins – Suppressors of apoptosis. Genes Dev 1999;13:239–52
  • Wright NT. Parameter Correlation in Models of Hyperthermic Cell Death. American Society of Mechanical Engineers 2011 Summer Bioengineering Conference, Farmington, PA, June 2011. New York: ASME; 2011. pp SBC2011–53933
  • Stiegler P. Vital stains used in HepG2 and MRC-5 experiments. Personal communication, 2012
  • Mayrhauser U, Stiegler P, Stadlbauer V, Koestenbauer S, Leber B, Konrad K, et al. Effect of hyperthermia on liver cell lines: Important findings for thermal therapy in hepatocellular carcinoma. Anticancer Res 2011;31:1583–8
  • Mayrhauser U, Stiegler P, Stadlbauer V, Koestenbauer S, Leber B, Konrad K, et al. Cell to cell interactions influence sensitivity of liver cell lines during hyperthermia. Anticancer Res 2011;31:3713–7
  • Leber B, Mayrhauser U, Leopold B, Koestenbauer S, Tscheliessnigg K, Stadlbauer V, et al. Impact of temperature on cell death in a cell-culture model of hepatocellular carcinoma. Anticancer Res 2012;32:915–21
  • He X, Bischof JC. The kinetics of thermal injury in human renal carcinoma cells. Ann Biomed Eng 2005;33:502–10
  • Feng Y, Fuentes D. Model-based planning and real-time predictive control for laser-induced thermal therapy. Int J Hyperthermia 2011;27:751–61
  • Pearce JA, Cilesiz I, Welch AJ, Chan EK, McMurray TJ, Thomsen SLMD. Comparison of Ho:YAG, Tm:YAG, and argon lasers for fusion of intestinal tissues. Bellingham, WA: Proc. Society of Photo-Optical Instrumentation Engineers, 1994. Volume 2128, pp 517–26
  • Jacques SL, Gaeeni MO. Thermally induced changes in optical properties of heart. IEEE Eng Med Biol Mag 1989;11:1199–200
  • Brown SL, Hunt JW, Hill RP. Differential thermal sensitivity of tumour and normal tissue microvascular response during hyperthermia. Int J Hyperthermia 1992;8:501–4
  • Cooper TE, Trezek GJ. Correlation of thermal properties of some human tissues with water content. Aerospace Med 1971;42:24–7
  • Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol 2002;3:487–97
  • Eriksson JE, Vandenabeele P. Workshop summary: Cell death mechanisms controlled by the TNF family. Adv Exp Med Biol 2011;691:585–8
  • Thomsen SL. The art and science of low-energy applications: pathology perspectives. Proc. Thermal Treatment of Tissue: Energy Delivery and Assessment VI. San Francisco, CA. Bellingham, WA: Society of Photo-Optical Instrumentation Engineers, 2011. Article no.: 790102
  • Roti Roti JL. Cellular responses to hyperthermia (40–46 °C): Cell killing and molecular events. Int J Hyperthermia 2008;24:3–15
  • Bhowmick S, Swanlund DJ, Bischof JC. In vitro thermal therapy of AT-1 Dunning prostate tumours. Int J Hyperthermia 2004;20:73–92
  • Bhowmick S, Swanlund DJ, Bischof JC. Supraphysiological thermal injury in dunning AT-1 prostate tumor cells. J Biomech Eng 2000;122:51–9
  • Eyring H, Stearn AE. The application of the theory of absolute reaction rates to proteins. Chem Rev 1939;24:253–70
  • Rosenberg B, Kemeny G, Switzer RC, Hamilton TC. Quantitative evidence for protein denaturation as the cause of thermal death. Nature 1971;232:471–3
  • Wright NT. On a relationship between the Arrhenius parameters from thermal damage studies. J Biomech Eng 2003;125:300–4
  • He X, Bischof JC. Quantification of temperature and injury response in thermal therapy and cryosurgery. Crit Rev Biomed Eng 2003;31:355–421
  • Miles CA, Ghelashvili M. Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys J 1999;76:3243–52
  • Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012;366:883–92
  • Beckham JT, Wilmink GJ, Mackanos MA, Takahashi K, Contag CH, Takahashi T, et al. Role of HSP70 in Cellular Thermotolerance. Lasers Surg Med 2008;40:704–15
  • Borrelli MJ, Thompson LL, Cain CA, Dewey WC. Time–temperature analysis of cell killing of BhK cells heated at temperatures in the range of 43.5 °C to 57.0 °C. Int J Radiat Oncol Biol Phys 1990;19:389–99
  • Shah B, Bhowmick S. Evaluation of important treatment parameters in supraphysiological thermal therapy of human liver cancer HepG2 cells. Ann Biomed Eng 2006;34:1745–57
  • Lepock JR, Frey HE, Bayne H, Markus J. Relationship of hyperthermia-induced hemolysis of human erythrocytes to the thermal denaturation of membrane proteins. Biochim Biophys Acta 1989;980:191–201
  • Przybylska M, Bryszewska M, KedzioraKedziora J. Thermosensitivity of red blood cells from Down’s syndrome individuals. Bioelectrochemistry 2000;52(2):239–49

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.