475
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

Generalised polynomial chaos-based uncertainty quantification for planning MRgLITT procedures

, , , &
Pages 324-335 | Received 09 Feb 2013, Accepted 17 Apr 2013, Published online: 21 May 2013

References

  • Carpentier A, Itzcovitz J, Payen D, George B, McNichols RJ, Gowda A, et al. Real-time magnetic resonance-guided laser thermal therapy for focal metastatic brain tumors. Neurosurgery 2008;63:ONS21–9
  • Rahmathulla G, Recinos PF, Valerio JE, Chao S, Barnett GH. Laser interstitial thermal therapy for focal cerebral radiation necrosis: A case report and literature review. Stereotact Funct Neurosurg 2012;90:192–200
  • Carpentier A, McNichols RJ, Stafford RJ, Guichard J-P, Reizine D, Delaloge S, et al. Laser thermal therapy: Real-time MRI-guided and computer-controlled procedures for metastatic brain tumors. Lasers Surg Med 2011;43:943–50
  • Carpentier A, Chauvet D, Reina V, Beccaria K, Leclerq D, McNichols RJ, et al. MR-guided LITT for recurrent glioblastomas. Lasers Surg Med 2012;44:361–8
  • Jethwa PR, Barrese JC, Gowda A, Shetty A, Danish SF. Magnetic resonance thermometry-guided laser-induced thermal therapy for intracranial neoplasms: Initial experience. Neurosurgery 2012;71:133–45
  • Curry DJ, Gowda A, McNichols RJ, Wilfong AA. MR-guided stereotactic laser ablation of epileptogenic foci in children. Epilepsy Behavior 2012;24:408–14
  • Hawasli AH, Ray, WZ, Murphy RKJ, Dacey RG Jr, Leuthardt EC. Magnetic resonance imaging-guided focused laser interstitial thermal therapy for subinsular metastatic adenocarcinoma: Technical case report. Neurosurgery 2012;70:332–8
  • McNichols RJ, Gowda A, Kangasniemi M, Bankson JA, Price RE, Hazle JD. MR thermometry-based feedback control of laser interstitial thermal therapy at 980 nm. Lasers Surg Med 2004;34:48–55
  • Ulrich F. Interstitial laser irradiation of cerebral gliomas. Med Laser Appl 2005;20:119–24
  • Fuentes D, Feng Y, Elliott A, Shetty A, McNichols RJ, Oden JT, et al. Adaptive real-time bioheat transfer models for computer-driven MR-guided laser induced thermal therapy. IEEE Trans Biomed Eng 2010;57:1024–30
  • Woodrum DA, Gorny KR, Mynderse LA, Amrami KK, Felmlee JP, Bjarnason H, et al. Feasibility of 3.0 T magnetic resonance imaging-guided laser ablation of a cadaveric prostate. Urology 2010;75:1514. e1–6
  • Fuentes D, Yung J, Hazle J, Weinberg J, Stafford R. Kalman filtered MR temperature imaging for laser induced thermal therapies. IEEE Trans Med Imaging 2011;31:984–94
  • Roujol S, Denis de Senneville B, Hey S, Moonen C, Ries M. Robust adaptive extended Kalman filtering for real time MR-thermometry guided HIFU interventions. IEEE Trans Med Imaging 2012;31:533–42
  • Potocki JK. Concurrent hyperthermia estimation schemes based on extended Kalman filtering and reduced-order modelling. Int J Hyperthermia 1993;9:849–65
  • Todd N, Payne A, Parker DL. Model predictive filtering for improved temporal resolution in MRI temperature imaging. Magn Reson Med 2010;63:1269–79
  • Mougenot C, Quesson B, De Senneville BD, De Oliveira PL, Sprinkhuizen S, Palussière J, et al. Three-dimensional spatial and temporal temperature control with MR thermometry-guided focused ultrasound (MRgHIFU). Magn Reson Med 2009;61:603–14
  • Fuentes D, Oden JT, Diller KR, Hazle JD, Elliott A, Shetty A, et al. Computational modeling and real-time control of patient-specific laser treatment of cancer. Ann Biomed Eng 2009;37:763–82
  • Minden V, Smith B, Knepley MG. Preliminary implementation of PETSc using GPUs. In: Yuen DA, Wang L, Chi X, Johnsson L, Ge W, Shi Y, eds. GPU solutions to multi-scale problems in science and engineering. Berlin: Springer; 2013. pp. 131--40
  • Deisher M, Smelyanskiy M, Nickerson B, Lee VW, Chuvelev M, Dubey P. Designing and dynamically load balancing hybrid LU for multi/many-core. Comput Sci Res Dev 2011;26:211–20
  • Chen CR, Miga MI, Galloway Jr RL. Optimizing electrode placement using finite-element models in radiofrequency ablation treatment planning. IEEE Trans Biomed Eng 2009;56:237–45
  • Schwarzmaier HJ, Yaroslavsky IV, Yaroslavsky AN, Fiedler V, Ulrich F, Kahn T. Treatment planning for MRI-guided laser-induced interstitial thermotherapy of brain tumors: The role of blood perfusion. J Magn Reson Imaging 1998;8:121–7
  • De Greef M, Kok HP, Correia D, Bel A, Crezee J. Optimization in hyperthermia treatment planning: The impact of tissue perfusion uncertainty. Med Phys 2010;37:4540–51
  • Prakash P, Diederich CJ. Considerations for theoretical modelling of thermal ablation with catheter-based ultrasonic sources: Implications for treatment planning, monitoring and control. Int J Hyperthermia 2012;28:69–86
  • Fuentes D, Cardan R, Stafford RJ, Yung J, Dodd GD, Feng Y. High-fidelity computer models for prospective treatment planning of radiofrequency ablation with in vitro experimental correlation. J Vasc Intervent Radiol 2010;21:1725–32
  • Pennes HH. Analysis of tissue and arterial blood temperatures in the resting forearm. J Appl Physiol 1948;1:93–122
  • Kim B-M, Jacques SL, Rastegar S, Thomsen S, Motamedi M. Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue. IEEE J Select Topics Quantum Electron 1996;2:922–33
  • Mohammed Y, Verhey JF. A finite element method model to simulate laser interstitial thermo therapy in anatomical inhomogeneous regions. Biomed Eng Online 2005;4:2
  • Fuentes D, Walker C, Elliott A, Shetty A, Hazle JD, Stafford RJ. Magnetic resonance temperature imaging validation of a bioheat transfer model for laser-induced thermal therapy. Int J Hyperthermia 2011;27:453–64
  • Xiu D. Numerical methods for stochastic computations: A spectral method approach. Princetion, NJ: Princeton University Press; 2010
  • Dos Santos I, Haemmerich D, Schutt D, Da Rocha AF, Menezes LR. Probabilistic finite element analysis of radiofrequency liver ablation using the unscented transform. Physics in medicine and biology 2009;54(3):627–40
  • Fahrenholtz S, Fuentes D, Stafford R, Hazle J. SU-F-BRCD-08: Uncertainty Quantification by Generalized Polynomial Chaos for MR-Guided Laser Induced Thermal Therapy. Proceeding at the 54th Annual Meeting for the American Association of Physicists in Medicine, Charlotte, NC. July 2012 [cited 29 Oct 2012]. pp. 3857–3857
  • Niederreiter H. Quasi-Monte Carlo methods and pseudo-random numbers. Bull Am Math Soc 1978;84:957–1041
  • McKay MD, Beckman RJ, Conover WJ. A Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 1979;21:239–45
  • Smith RL. Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions. Operations Res 1984;32:1296–308
  • Prudencio E, Schulz K. The parallel C++ statistical library QUESO™: Quantification of uncertainty for estimation, simulation and optimization. In: Alexander M, D’Ambra P, Belloum A, Bosilca G, Cannataro M, Danelutto M, editors. Euro-Par 2011: Parallel processing workshops. Berlin: Springer, 2012. pp 398–407
  • Prudencio E, Cheung SH. Parallel adaptive multilevel sampling algorithms for the Bayesian analysis of mathematical models. Int J Uncertain Quantification 2012;2:215–37
  • Wiener N. The homogeneous chaos. Am J Math 1938;60:897–936
  • Ghanem RG, Spanos PD. Stochastic finite elements: A spectral approach. New York: Springer; 1991
  • Xiu D, Karniadakis GE. The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 2002;24:619–64
  • Xiu D, Karniadakis GE. Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput Methods Appl Mech Eng 2002;191:4927–48
  • Geneser SE, Hinkle JD, Kirby RM, Wang B, Salter B, Joshi S. Quantifying variability in radiation dose due to respiratory-induced tumor motion. Med Image Anal 2011;15:640–9
  • Reagan MT, Najm HN, Ghanem RG, Knio OM. Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection. Combust Flame 2003;132:545–55
  • Cassell JS, Williams MMR. An approximate method for solving radiation and neutron transport problems in spatially stochastic media. Ann Nucl Energy 2008;35:790–803
  • Kewlani G, Iagnemma K. A multi-element generalized polynomial chaos approach to analysis of mobile robot dynamics under uncertainty. IEEE Proceedings of the International Conference on Intelligent Robots and Systems, 2009, pp. 1177–1182
  • Oden T, Moser R, Ghattas O. Computer predictions with quantified uncertainty, Part I. SIAM News 2010;43:1–3
  • Yaroslavsky AN, Schulze PC, Yaroslavsky I V, Schober R, Ulrich F, Schwarzmaier HJ. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys Med Biol 2002;47:2059–73
  • Kreith F. The CRC handbook of thermal engineering. Berlin: Springer; 2000
  • Huttunen JMJ, Huttunen T, Malinen M, Kaipio JP. Determination of heterogeneous thermal parameters using ultrasound induced heating and MR thermal mapping. Phys Med Biol 2006;51:1011–32
  • Yung JP, Shetty A, Elliott A, Weinberg JS, McNichols RJ, Gowda A, et al. Quantitative comparison of thermal dose models in normal canine brain. Med Phys 2010;37:5313–21
  • Valvano JW. Tissue thermal properties and perfusion. In: Welch AJ, Gemert MJC, editors. Optical-thermal response of laser-irradiated tissue. Berlin: Springer; 2011. pp 455–85
  • Madsen SJ, Wilson BC. Optical properties of brain tissue. In: Madsen SJ, editor. Optical methods and instrumentation in brain imaging and therapy. New York: Springer; 2013. pp 1–22
  • Beek JF, Blokland P, Posthumus P, Aalders M, Pickering JW, Sterenborg HJCM, et al. In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm. Phys Med Biol 1997;42:2255–61
  • Valvano JW, Cochran JR, Diller KR. Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors. Int J Thermophys 1985;6:301–11
  • Diller KR, Valvano JW, Pearce JA. Bioheat transfer. In: Kreith F, editor. The CRC handbook of thermal engineering. Boca Raton, FL: CRC Press; 2000. pp 4–114 to 4–215
  • Duck FA. Physical properties of tissue: A comprehensive reference book. London: Academic Press; 1990
  • Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia 2003;19:267–94
  • Henriques FC, Moritz AR. Studies of thermal injury: I. The conduction of heat to and through skin and the temperatures attained therein. A theoretical and an experimental investigation. Am J Pathol 1947;23:530–49
  • Pickering JW, Prahl SA, Van Wieringen N, Beek JF, Sterenborg HJ, Van Gemert MJ. Double-integrating-sphere system for measuring the optical properties of tissue. Appl Optics 1993;32:399–410
  • Yaroslavsky I, Yaroslavsky A. Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements. Appl Optics 1996;35:6797–809
  • Germer CT, Roggan A, Ritz JP, Isbert C, Albrecht D, Müller G, et al. Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range. Lasers Surg Med 1998;23:194–203
  • Schwarzmaier H, Yaroslavskya A, Yaroslavsk I, Goldbacha T, Kahn T, Ulrichc F, et al. Optical properties of native and coagulated human brain structures. Proc. SPIE 2970, Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VII, 492 (22 May 1997); doi:10.1117/12.275082
  • Ritz JP, Roggan A, Germer CT, Isbert C, Müller G, Buhr HJ. Continuous changes in the optical properties of liver tissue during laser-induced interstitial thermotherapy. Lasers Surg Med 2001;28:307–12
  • Friebel M, Do K, Hahn A, Mu G, Berlin D, Medizin L, et al. Optical properties of circulating human blood in the wavelength range 400–2500 nm. J Biomed Optics 1999;4:36–46
  • Bankson JA, Stafford RJ, Hazle JD. Partially parallel imaging with phase-sensitive data: Increased temporal resolution for magnetic resonance temperature imaging. Magn Reson Med 2005;53:658–65
  • Dickey DJ, Partridge K, Moore RB, Tulip J. Light dosimetry for multiple cylindrical diffusing sources for use in photodynamic therapy. Phys Med Biol 2004;49:3197–208
  • Blacker TD, Bohnhoff WJ, Edwards T. CUBIT mesh generation environment. Vol. 1: Users manual. Albuquerque, NM: Sandia National Laboratories; 2004
  • Eldred MS, Giunta AA, Van Bloemen Waanders BG, Wojtkiewicz SF, Hart WE, Alleva MP. DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: Version 4.1 reference manual. Albuquerque, NM: Sandia National Laboratories; 2007
  • Butler T, Dawson C, Wildey T. A posteriori error analysis of stochastic differential equations using polynomial chaos expansions. SIAM J Sci Comput 2011;33:1267–91
  • Babuška I, Nobile F, Tempone R. Worst case scenario analysis for elliptic problems with uncertainty. Numerische Mathematik 2005;101:185–219
  • Yarmolenko PS, Moon EJ, Landon C, Manzoor A, Hochman DW, Viglianti BL, et al. Thresholds for thermal damage to normal tissues: An update. Int J Hyperthermia 2011;27:320–43
  • MacLellan C, Fuentes D, Schwartz J, Elliott A, Hazle J, Stafford RJ. Estimating nanoparticle optical properties with magnetic resonance temperature imaging and bioheat transfer simulation. Med Phys 2013;in press
  • Fasano A, Hömberg D, Naumov D. On a mathematical model for laser-induced thermotherapy. Appl Math Model 2010;34:3831–40
  • Feng Y, Fuentes D. Model-based planning and real-time predictive control for laser-induced thermal therapy. Int J Hyperthermia 2011;27:751–61
  • Ibanez L, Schroeder W, Ng L, Cates J. The ITK software guide, 2nd ed. Clifton Park, NY: Kitware; 2005. Available from: http://www.itk.org/ItkSoftwareGuide.pdf
  • Henderson A, Ahrens J. The ParaView guide: A parallel visualization application. Clifton Park, NY: Kitware; 2004
  • Kirk BS, Peterson JW, Stogner RH Carey GF. libMesh – A C++ finite element library. CFDLab; 2003. Available from: http://libmesh.sourceforge.net
  • Welch AJ, Gemert MJC, editors. Optical-thermal response of laser-irradiated tissue, 2nd ed. Berlin: Springer; 2011. p 951
  • Cooper TE, Trezek GJ. Correlation of thermal properties of some human tissue with water content. Aerospace Med 1971;42:24–7
  • Kapin MA, Ferguson JL. Hemodynamic and regional circulatory alterations in dog during anaphylactic challenge. Am J Physiology: Heart Circ Physiol 1985;249:H430–7
  • Atzler E, Richter F. Über die Wärmekapazität des arteriellen und venösen Blutes. [About the heat capacity of arterial and venous blood] Beitr Chem Phys Pathol 1920;112:310–12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.