907
Views
39
CrossRef citations to date
0
Altmetric
Review Articles

Thermal modelling using discrete vasculature for thermal therapy: A review

, , , , &
Pages 336-345 | Received 20 Feb 2013, Accepted 29 Apr 2013, Published online: 05 Jun 2013

References

  • Lagendijk JJ, Hofman P, Schipper J. Perfusion analyses in advanced breast carcinoma during hyperthermia. Int J Hyperthermia 1988;4:479–95
  • Song CW. Effect of local hyperthermia on blood flow and microenvironment: A review. Cancer Res 1984;44:S4721–S4730
  • Arunachalam K, Maccarini P, De Luca V, Tognolatti P, Bardati F, Snow B, et al. Detection of vesicoureteral reflux using microwave radiometry-system characterization with tissue phantoms. IEEE Trans Biomed Eng 2011;58:1629–36
  • Hand JW, van Leeuwen GM, Mizushina S, van de Kamer JB, Maruyama K, Sugiura T, et al. Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modelling. Phys Med Biol 2001;46:1885–903
  • Stakhursky VL, Arabe O, Cheng KS, Macfall J, Maccarini P, Craciunescu O, et al. Real-time MRI-guided hyperthermia treatment using a fast adaptive algorithm. Phys Med Biol 2009;54:2131–45
  • Weihrauch M, Wust P, Weiser M, Nadobny J, Eisenhardt S, Budach V, et al. Adaptation of antenna profiles for control of MR guided hyperthermia (HT) in a hybrid MR-HT system. Med Phys 2007;34:4717–25
  • Gellermann J, Faehling H, Mielec M, Cho CH, Budach V, Wust P. Image artifacts during MRT hybrid hyperthermia – causes and elimination. Int J Hyperthermia 2008;24:327–35
  • Coakley FV, Foster BR, Farsad K, Hung AY, Wilder KJ, Amling CL, et al. Pelvic applications of MR-guided high intensity focused ultrasound. Abdom Imaging 2013, epub ahead of print. DOI: 10.1007/s00261-013-9999-2
  • Gellermann J, Hildebrandt B, Issels R, Ganter H, Wlodarczyk W, Budach V, et al. Noninvasive magnetic resonance thermography of soft tissue sarcomas during regional hyperthermia: Correlation with response and direct thermometry. Cancer 2006;107:1373–82
  • Gellermann J, Wlodarczyk W, Hildebrandt B, Ganter H, Nicolau A, Rau B, et al. Noninvasive magnetic resonance thermography of recurrent rectal carcinoma in a 1.5 Tesla hybrid system. Cancer Res 2005;65:5872–80
  • Craciunescu OI, Stauffer PR, Soher BJ, Wyatt CR, Arabe O, Maccarini P, et al. Accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas. Med Phys 2009;36:4848–58
  • Kok HP, Van Haaren PMA, van de Kamer JB, Zum Vörde Sive Vörding PJ, Wiersma J, Hulshof MCCM, et al. Prospective treatment planning to improve locoregional hyperthermia for oesophageal cancer. Int J Hyperthermia 2006;22:375–89
  • Franckena M, Canters R, Termorshuizen F, Van der Zee J, Van Rhoon GC. Clinical implementation of hyperthermia treatment planning guided steering: A cross over trial to assess its current contribution to treatment quality. Int J Hyperthermia 2010;26:145–57
  • Bhowmik A, Singh R, Repaka R, Mishra SC. Conventional and newly developed bioheat transport models in vascularized tissues: A review. J Therm Biol 2013;38:107–25
  • Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1948;1:93–122
  • Baish JW, Foster KR, Ayyaswamy PS. Perfused phantom models of microwave irradiated tissue. J Biomech Eng 1986;108:239–45
  • Wulff W. The energy conservation equation for living tissue. IEEE Trans Biomed Eng 1974;21:494–5
  • Chen MM, Holmes KR. Microvascular contributions in tissue heat transfer. Ann NY Acad Sci 1980;335:137–50
  • Weinbaum S, Jiji LM. A new simplified bioheat equation for the effect of blood flow on local average tissue temperature. J Biomed Eng 1985;107:131–9
  • Crezee J, Lagendijk JJ. Experimental verification of bioheat transfer theories: Measurement of temperature profiles around large artificial vessels in perfused tissue. Phys Med Biol 1990;35:905–23
  • Chato JC. Heat transfer to blood vessels. J Biomech Eng 1980;102:110–8
  • Crezee J, Lagendijk JJ. Temperature uniformity during hyperthermia: The impact of large vessels. Phys Med Biol 1992;37:1321–37
  • Lagendijk JJ. The influence of bloodflow in large vessels on the temperature distribution in hyperthermia. Phys Med Biol 1982;27:17–23
  • Rawnsley RJ, Roemer RB, Dutton AW. The simulation of discrete vessel effects in experimental hyperthermia. J Biomech Eng 1994;116:256–62
  • Valvano JW, Yuan DY, Anderson GT. 3-D small artery model of the canine kidney cortex. In: ASME, Advances in Heat and Mass Transfer in Biological Systems, Vol 288, 1994, pp. 9–15. New York: American Society of Mechanical Engineers
  • Mitchell JW, Myers GE. An analytical model of the counter-current heat exchange phenomena. Biophys J 1968;8:897–911
  • Chen C, Xu LX. Tissue temperature oscillations in an isolated pig kidney during surface heating. Ann Biomed Eng 2002;30:1162–71
  • Moros EG, Straube WL, Myerson RJ. Finite difference vascular model for 3-D cancer treatment with hyperthermia. In: Roemer RB, ed. Advances in Biological and Heat and Mass Transfer, Vol. 286. New York: ASME Heat Transfer Division, 1993, pp. 107–11
  • Kolios MC, Sherar MD, Wothington AE, Hunt JW. Modeling temperture gradients near large vessels in perfused tissues. In: Ebadian MA, Oosthuizen PH, eds. Fundamentals of Biomedical Heat Transfer, Vol. 295. New York: ASME, 1994, pp. 23–30
  • Kolios MC, Sherar MD, Hunt JW. Large blood vessel cooling in heated tissues: A numerical study. Phys Med Biol 1995;40:477–94
  • Brinck H, Werner J. Estimation of the thermal effect of blood flow in a branching countercurrent network using a three-dimensional vascular model. J Biomech Eng 1994;116:324–30
  • Brinck H, Werner J. Use of vascular and non-vascular models for the assessment of temperature distribution during induced hyperthermia. Int J Hyperthermia 1995;11:615–26
  • Zhu L, Xu LX, He Q, Weinbaum S. A new fundamental bioheat equation for muscle tissue – Part II: Temperature of SAV vessels. J Biomech Eng 2002;124:121–32
  • Huang HW, Chen ZP, Roemer RB. A counter current vascular network model of heat transfer in tissues. J Biomech Eng 1996;118:120–9
  • Shrivastava D, Roemer RB. Readdressing the issue of thermally significant blood vessels using a countercurrent vessel network. J Biomech Eng 2006;128:210–6
  • Blanchard CH, Gutierrez G, White JA, Roemer RB. Hybrid finite element-finite difference method for thermal analysis of blood vessels. Int J Hyperthermia 2000;16:341–53
  • Lagendijk JJ, Schellekens M, Schipper J, van der Linden PM. A three-dimensional description of heating patterns in vascularised tissues during hyperthermic treatment. Phys Med Biol 1984;29:495–507 . http://dx.doi.org/10.1088/0031-9155/29/5/002
  • Mooibroek J, Lagendijk JJ. A fast and simple algorithm for the calculation of convective heat transfer by large vessels in three-dimensional inhomogeneous tissues. IEEE Trans Biomed Eng 1991;38:490–501
  • Kotte ANTJ, van Leeuwen GMJ, de Bree J, van der Koijk JF, Crezee J, Lagendijk JJW. A description of discrete vessel segments in thermal modelling of tissues. Phys Med Biol 1996;41:865–84 . http://dx.doi.org/10.1088/0031-9155/41/5/004
  • Kotte AN, van Leeuwen GM, Lagendijk JJ. Modelling the thermal impact of a discrete vessel tree. Phys Med Biol 1999;44:57–74
  • Raaymakers BW, Crezee J, Lagendijk JJ. Modelling individual temperature profiles from an isolated perfused bovine tongue. Phys Med Biol 2000;45:765–80
  • Craciunescu OI, Raaymakers BW, Kotte AN, Das SK, Samulski TV, Lagendijk JJ. Discretizing large traceable vessels and using DE-MRI perfusion maps yields numerical temperature contours that match the MR noninvasive measurements. Med Phys 2001;28:2289–96
  • van Leeuwen GM, Kotte AN, Lagendijk JJ. A flexible algorithm for construction of 3-D vessel networks for use in thermal modeling. IEEE Trans Biomed Eng 1998;45:596–604
  • Van den Berg CAT, van de Kamer JB, De Leeuw AAC, Jeukens CRLPN, Raaymakers BW, Van Vulpen M, et al. Towards patient specific thermal modelling of the prostate. Phys Med Biol 2006;51:809–25 . http://dx.doi.org/10.1088/0031-9155/51/4/004
  • van Leeuwen GM, Lagendijk JJ, Van Leersum BJ, Zwamborn AP, Hornsleth SN, Kotte AN. Calculation of change in brain temperatures due to exposure to a mobile phone. Phys Med Biol 1999;44:2367–79
  • Flyckt VM, Raaymakers BW, Kroeze H, Lagendijk JJ. Calculation of SAR and temperature rise in a high-resolution vascularized model of the human eye and orbit when exposed to a dipole antenna at 900, 1500 and 1800 MHz. Phys Med Biol 2007;52:2691–701
  • van Lier AL, Kotte AN, Raaymakers BW, Lagendijk JJ, Van den Berg CA. Radiofrequency heating induced by 7T head MRI: Thermal assessment using discrete vasculature or Pennes' bioheat equation. J Magn Reson Imaging 2012;35:795–803
  • van Leeuwen GM, Hand JW, Lagendijk JJ, Azzopardi DV, Edwards AD. Numerical modeling of temperature distributions within the neonatal head. Pediatr Res 2000;48:351–6
  • Kok HP, Van den Berg CAT, Bel A, Crezee J. Fast thermal simulations and temperature optimisation with realistic 3D vessel networks for hyperthermia treatment planning. Med Phys (submitted) 2013
  • Huang HW, Liauh CT, Chou CY, Shih TC, Lin WL. A fast adaptive power scheme based on temperature distribution and convergence value for optimal hyperthermia treatment. Appl Therm Eng 2012;37:103–11
  • Shih TC, Liu HL, Horng ATL. Cooling effect of thermally significant blood vessels in perfused tumor tissue during thermal therapy. Int Comm Heat Mass Transfer 2006;33:135–41
  • Huang HW, Liauh CT, Shih TC, Horng TL, Lin WL. Significance of blood vessels in optimization of absorbed power and temperature distributions during hyperthermia. Int J Heat Mass Transfer 2010;53:5651–62
  • Das SK, Clegg ST, Samulski TV. Computational techniques for fast hyperthermia temperature optimization. Med Phys 1999;26:319–28
  • Schreiner W, Buxbaum PF. Computer-optimization of vascular trees. IEEE Trans Biomed Eng 1993;40:482–91
  • Gottlieb ME. Modelling blood vessels: A deterministic method with fractal structure based on physiological rules. In: Proceedings of the Twelfth International Conference of the IEEE EMBS, 1990, pp. 1386–7
  • Stokes CL, Lauffenburger DA. Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J Theor Biol 1991;152:377–403
  • Nekka F, Kyriacos S, Kerrigan C, Cartilier L. A model of growing vascular structures. Bull Math Biol 1996;58:409–24
  • Baish JW. Formulation of a statistical model of heat transfer in perfused tissue. J Biomech Eng 1994;116:521–7
  • Prishvin M, Zaridze R, Bit-Babik G, Faraone A. Improved numerical modelling of heat transfer in human tissue exposed to RF energy. Australas Phys Eng Sci Med 2010;33:307–17
  • Ludemann L, Wust P, Gellermann J. Perfusion measurement using DCE-MRI: Implications for hyperthermia. Int J Hyperthermia 2008;24:91–6
  • De Greef M, Kok HP, Correia D, Bel A, Crezee J. Optimization in hyperthermia treatment planning: The impact of tissue perfusion uncertainty. Med Phys 2010;37:4540–50

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.