1,146
Views
42
CrossRef citations to date
0
Altmetric
Biology/Translational

Actively targeting solid tumours with thermoresponsive drug delivery systems that respond to mild hyperthermia

, &
Pages 501-510 | Received 18 Apr 2013, Accepted 23 Jun 2013, Published online: 07 Aug 2013

References

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J Control Release 2000;65:271–84
  • Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004;56:1649–59
  • Gu F, Zhang L, Teply BA, Mann N, Wang A, Radovic-Moreno AF, et al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci USA 2008;105:2586–91
  • Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 2005;338:284–93
  • Muss HB, Thor AD, Berry DA, Kute T, Liu ET, Koerner F, et al. C-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer. N Engl J Med 1994;330:1260–6
  • Gasselhuber A, Dreher MR, Partanen A, Yarmolenko PS, Woods D, Wood BJ, et al. Targeted drug delivery by high intensity focused ultrasound mediated hyperthermia combined with temperature-sensitive liposomes: Computational modelling and preliminary in vivo validation. Int J Hyperthermia 2012;28:337–48
  • Gasselhuber A, Dreher MR, Rattay F, Wood BJ, Haemmerich D. Comparison of conventional chemotherapy, stealth liposomes and temperature-sensitive liposomes in a mathematical model. PLoS ONE 2012;7:e47453
  • Liu BR, Yang M, Li XL, Qian XP, Shen ZT, Ding YT, et al. Enhanced efficiency of thermally targeted taxanes delivery in a human xenograft model of gastric cancer. J Pharm Sci 2008;97:3170–81
  • Peng CL, Tsai HM, Yang SJ, Luo TY, Lin CF, Lin WJ, et al. Development of thermosensitive poly(n-isopropylacrylamide-co-((2-dimethylamino) ethyl methacrylate))-based nanoparticles for controlled drug release. Nanotechnology 2011;22:265608
  • Zhang J, Qian Z, Gu Y. In vivo anti-tumor efficacy of docetaxel-loaded thermally responsive nanohydrogel. Nanotechnology 2009;20:325102
  • Dreher MR, Liu W, Michelich CR, Dewhirst MW, Chilkoti A. Thermal cycling enhances the accumulation of a temperature-sensitive biopolymer in solid tumors. Cancer Res 2007;67:4418–24
  • MacEwan SR, Chilkoti A. Digital switching of local arginine density in a genetically encoded self-assembled polypeptide nanoparticle controls cellular uptake. Nano Lett 2012;12:3322–8
  • McDaniel JR, MacEwan SR, Dewhirst M, Chilkoti A. Doxorubicin-conjugated chimeric polypeptide nanoparticles that respond to mild hyperthermia. J Control Release 2012;159:362–7
  • McDaniel JR, Bhattacharyya J, Vargo KB, Hassouneh W, Hammer DA, Chilkoti A. Self-assembly of thermally responsive nanoparticles of a genetically encoded peptide polymer by drug conjugation. Angew Chem Int Ed Engl 2013;52:1683–7
  • Liu RX, Fraylich M, Saunders BR. Thermoresponsive copolymers: From fundamental studies to applications. Colloid Polym Sci 2009;287:627–43
  • Nakayama M, Okano T. Multi-targeting cancer chemotherapy using temperature-responsive drug carrier systems. React Funct Polym 2011;71:235–44
  • Gil ES, Hudson SM. Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 2004;29:1173–222
  • Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 2008;126:187–204
  • Falk MH, Issels RD. Hyperthermia in oncology. Int J Hyperthermia 2001;17:1–18
  • Overgaard J, Gonzalez Gonzalez D, Hulshof MC, Arcangeli G, Dahl O, Mella O, et al. Hyperthermia as an adjuvant to radiation therapy of recurrent or metastatic malignant melanoma. A multicentre randomized trial by the European Society for Hyperthermic Oncology. 1996. Int J Hyperthermia 2009;25:323–34
  • van der Zee J, Gonzalez Gonzalez D, van Rhoon GC, van Dijk JD, van Putten WL, Hart AA. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: A prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet 2000;355:1119–25
  • Vernon CC, Hand JW, Field SB, Machin D, Whaley JB, van der Zee J, et al. Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: Results from five randomized controlled trials. International Collaborative Hyperthermia Group. Int J Radiat Oncol Biol Phys 1996;35:731–44
  • Viglianti BL, Stuaffer P, Repasky E, Jones E, Vujaskovic Z, Dewhirst M. Hyperthermia. In: Hong W, Bast R Jr, Hait W, Kufe DW, Holland JF, Pollock RE., et al., eds. Holland Frei Cancer Medicine. Shelton, CT: People’s Medical Publishing House, 2010, pp. 528–40
  • Genet SC, Fujii Y, Maeda J, Kaneko M, Genet MD, Miyagawa K, et al. Hyperthermia inhibits homologous recombination repair and sensitizes cells to ionizing radiation in a time- and temperature-dependent manner. J Cell Physiol 2013;228:1473–81
  • Raaphorst GP, Ng CE, Yang DP. Thermal radiosensitization and repair inhibition in human melanoma cells: A comparison of survival and DNA double strand breaks. Int J Hyperthermia 1999;15:17–27
  • Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Dodge RK, Charles HC, et al. Radiation therapy and hyperthermia improve the oxygenation of human soft tissue sarcomas. Cancer Res 1996;56:5347–50
  • Jones EL, Prosnitz LR, Dewhirst MW, Marcom PK, Hardenbergh PH, Marks LB, et al. Thermochemoradiotherapy improves oxygenation in locally advanced breast cancer. Clin Cancer Res 2004;10:4287–93
  • Roti JLR. Heat-induced alterations of nuclear protein associations and their effects on DNA repair and replication. Int J Hyperthermia 2007;23:3–15
  • Westra A, Dewey WC. Variation in sensitivity to heat shock during cell-cycle of Chinese hamster cells in-vitro. Int J Radiat Biol 1971;19:466–7
  • Bergs JWJ, Krawczyk PM, Borovski T, ten Cate R, Rodermond HM, Stap J, et al. Inhibition of homologous recombination by hyperthermia shunts early double strand break repair to non-homologous end-joining. DNA Repair 2013;12:38–45
  • Issels RD. Hyperthermia adds to chemotherapy. Eur J Cancer 2008;44:2546–54
  • Tang Y, McGoron AJ. Increasing the rate of heating: A potential therapeutic approach for achieving synergistic tumour killing in combined hyperthermia and chemotherapy. Int J Hyperthermia 2013;29:145–55
  • Gray WR, Sandberg LB, Foster JA. Molecular model for elastin structure and function. Nature 1973;246:461–6
  • Tatham AS, Shewry PR. Elastomeric proteins: Biological roles, structures and mechanisms. Trends Biochem Sci 2000;25:567–71
  • Urry DW. Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J Phys Chem B 1997;101:11007–28
  • Meyer DE, Chilkoti A. Quantification of the effects of chain length and concentration on the thermal behavior of elastin-like polypeptides. Biomacromolecules 2004;5:846–51
  • Urry DW. The change in Gibbs free energy for hydrophobic association – Derivation and evaluation by means of inverse temperature transitions. Chem Phys Lett 2004;399:177–83
  • Cho YH, Zhang YJ, Christensen T, Sagle LB, Chilkoti A, Cremer PS. Effects of Hofmeister anions on the phase transition temperature of elastin-like polypeptides. J Phys Chem B 2008;112:13765–71
  • Meyer DE, Chilkoti A. Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nat Biotechnol 1999;17:1112–5
  • Urry DW, Parker TM, Reid MC, Gowda DC. Biocompatibility of the bioelastic materials, poly(GVGVP) and its gamma-irradiation cross-linked matrix – Summary of generic biological test-results. J Bioact Compat Polym 1991;6:263–82
  • Liu WE, Dreher MR, Furgeson DY, Peixoto KV, Yuan H, Zalutsky MR, et al. Tumor accumulation, degradation and pharmacokinetics of elastin-like polypeptides in nude mice. J Control Release 2006;116:170–8
  • Shamji MF, Betre H, Kraus VB, Chen J, Chilkoti A, Pichika R, et al. Development and characterization of a fusion protein between thermally responsive elastin-like polypeptide and interleukin-1 receptor antagonist: Sustained release of a local antiinflammatory therapeutic. Arthritis Rheum 2007;56:3650–61
  • Dreher MR, Liu WG, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 2006;98:335–44
  • Janib SM, Liu S, Park R, Pastuszka MK, Shi P, Moses AS, et al. Kinetic quantification of protein polymer nanoparticles using non-invasive imaging. Integr Biol 2013;5:183–94
  • Trabbic-Carlson K, Liu L, Kim B, Chilkoti A. Expression and purification of recombinant proteins from Escherichia coli: Comparison of an elastin-like polypeptide fusion with an oligohistidine fusion. Protein Sci 2004;13:3274–84
  • Raucher D, Chilkoti A. Enhanced uptake of a thermally responsive polypeptide by tumor cells in response to its hyperthermia-mediated phase transition. Cancer Res 2001;61:7163–70
  • Meyer DE, Kong GA, Dewhirst MW, Zalutsky MR, Chilkoti A. Targeting a genetically engineered elastin-like polypeptide to solid tumors by local hyperthermia. Cancer Res 2001;61:1548–54
  • MacKay JA, Chen M, McDaniel JR, Liu W, Simnick AJ, Chilkoti A. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nat Mater 2009;8:993–9
  • Dreher MR, Raucher D, Balu N, Colvin OM, Ludeman SM, Chilkoti A. Evaluation of an elastin-like polypeptide-doxorubicin conjugate for cancer therapy. J Control Release 2003;91:31–43
  • Walker L, Perkins E, Kratz F, Raucher D. Cell penetrating peptides fused to a thermally targeted biopolymer drug carrier improve the delivery and antitumor efficacy of an acid-sensitive doxorubicin derivative. Int J Pharm 2012;436:825–32
  • MacKay JA, Callahan DJ, FitzGerald KN, Chilkoti A. Quantitative model of the phase behavior of recombinant pH-responsive elastin-like polypeptides. Biomacromolecules 2010;11:2873–9
  • Kim B, Chilkoti A. Allosteric actuation of inverse phase transition of a stimulus-responsive fusion polypeptide by ligand binding. J Am Chem Soc 2008;130:17867–73
  • Callahan DJ, Liu WE, Li XH, Dreher MR, Hassouneh W, Kim M, et al. Triple stimulus-responsive polypeptide nanoparticles that enhance intratumoral spatial distribution. Nano Lett 2012;12:2165–70
  • Strzegowski LA, Martinez MB, Gowda DC, Urry DW, Tirrell DA. Photomodulation of the inverse temperature transition of a modified elastin poly(pentapeptide). J Am Chem Soc 1994;116:813–4
  • Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965;13:238–52
  • Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1991;1066:29–36
  • Huang SK, Lee KD, Hong K, Friend DS, Papahadjopoulos D. Microscopic localization of sterically stabilized liposomes in colon carcinoma-bearing mice. Cancer Res 1992;52:5135–43
  • Huang SK, Martin FJ, Jay G, Vogel J, Papahadjopoulos D, Friend DS. Extravasation and transcytosis of liposomes in Kaposi’s sarcoma-like dermal lesions of transgenic mice bearing the HIV tat gene. Am J Pathol 1993;143:10–4
  • Immordino ML, Brusa P, Rocco F, Arpicco S, Ceruti M, Cattel L. Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing lipophilic gemcitabine prodrugs. J Control Release 2004;100:331–46
  • Gabizon AA. Liposomal anthracyclines. Hematol Oncol Clin North Am 1994;8:431–50
  • Lorusso D, Di Stefano A, Carone V, Fagotti A, Pisconti S, Scambia G. Pegylated liposomal doxorubicin-related palmar-plantar erythrodysesthesia (‘hand-foot’ syndrome). Ann Oncol 2007;18:1159–64
  • Landon C, Park JY, Needham D, Dewhirst M. Nanoscale drug delivery and hyperthermia: The materials design and preclinical and clinical testing of low temperature-sensitive liposomes used in combination with mild hyperthermia in the treatment of local cancer. Open Nanomed J 2011;3:38–64
  • Kono K. Thermosensitive polymer-modified liposomes. Adv Drug Deliv Rev 2001;53:307–19
  • Yokoyama M, Miyauchi M, Yamada N, Okano T, Sakurai Y, Kataoka K, et al. Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. Cancer Res 1990;50:1693–700
  • Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv Drug Deliv Rev 2001;47:113–31
  • Kuckling D, Adler HJP, Arndt KF, Ling L, Habicher WD. Temperature and pH dependent solubility of novel poly(n-isopropylacrylamide) copolymers. Macromol Chem Phys 2000;201:273–80
  • Yang M, Ding YT, Zhang LY, Qian XP, Jiang XQ, Liu BR. Novel thermosensitive polymeric micelles for docetaxel delivery. J Biomed Mater Res A 2007;81A:847–57
  • Liu BR, Yang M, Li RT, Ding YT, Qian XP, Yu LX, et al. The antitumor effect of novel docetaxel-loaded thermosensitive micelles. Eur J Pharm Biopharm 2008;69:527–34
  • Kohori F, Sakai K, Aoyagi T, Yokoyama M, Yamato M, Sakurai Y, et al. Control of adriamycin cytotoxic activity using thermally responsive polymeric micelles composed of poly(n-isopropylacrylamide-co-n,n-dimethylacrylamide)-b-poly(d,l-lactide). Colloids Surf B Biointerfaces 1999;16:195–205
  • Li W, Li JF, Gao J, Li BH, Xia Y, Meng YC, et al. The fine-tuning of thermosensitive and degradable polymer micelles for enhancing intracellular uptake and drug release in tumors. Biomaterials 2011;32:3832–44
  • Liu SQ, Tong YW, Yang YY. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(n-isopropylacrylamide-co-n,n-dimethylacrylamide)-b-poly(d,l-lactide-co-glycolide) with varying compositions. Biomaterials 2005;26:5064–74
  • Akimoto J, Nakayama M, Sakai K, Okano T. Temperature-induced intracellular uptake of thermoresponsive polymeric micelles. Biomacromolecules 2009;10:1331–6
  • Akimoto J, Nakayama M, Sakai K, Okano T. Thermally controlled intracellular uptake system of polymeric micelles possessing poly(n-isopropylacrylamide)-based outer coronas. Mol Pharm 2010;7:926–35
  • Simnick AJ, Amiram M, Liu WG, Hanna G, Dewhirst MW, Kontos CD, et al. In vivo tumor targeting by a NGR-decorated micelle of a recombinant diblock copolypeptide. J Control Release 2011;155:144–51
  • Simnick AJ, Valencia CA, Liu RH, Chilkoti A. Morphing low-affinity ligands into high-avidity nanoparticles by thermally triggered self-assembly of a genetically encoded polymer. ACS Nano 2010;4:2217–27
  • Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters. Proc Natl Acad Sci USA 2000;97:13003–8
  • Newkome GR, Moorefield CN, Baker GR, Saunders MJ, Grossman SH. Chemistry of micelles. Part 13. Unimolecular micelles. Angew Chem Int Ed Engl 1991;30:1178–80
  • Jansen JFGA, Debrabandervandenberg EMM, Meijer EW. Encapsulation of guest molecules into a dendritic box. Science 1994;266:1226–9
  • Kimura M, Kato M, Muto T, Hanabusa K, Shirai H. Temperature-sensitive dendritic hosts: Synthesis, characterization, and control of catalytic activity. Macromolecules 2000;33:1117–9
  • Zhao YJ, Fan XP, Liu D, Wang Z. Pegylated thermo-sensitive poly(amidoamine) dendritic drug delivery systems. Int J Pharm 2011;409:229–36
  • Rezaei SJT, Nabid MR, Niknejad H, Entezami AA. Multifunctional and thermoresponsive unimolecular micelles for tumor-targeted delivery and site-specifically release of anticancer drugs. Polymer 2012;53:3485–97
  • Chandra S, Dietrich S, Lang H, Bahadur D. Dendrimer-doxorubicin conjugate for enhanced therapeutic effects for cancer. J Mater Chem 2011;21:5729–37
  • Qian ZY, Fu SZ, Feng SS. Nanohydrogels as a prospective member of the nanomedicine family. Nanomedicine (Lond) 2013;8:161–4
  • Zhang J, Chen H, Xu L, Gu Y. The targeted behavior of thermally responsive nanohydrogel evaluated by NIR system in mouse model. J Control Release 2008;131:34–40
  • Matyjaszewski K, Xia J. Atom transfer radical polymerization. Chem Rev 2001;101:2921–90
  • Siegwart DJ, Oh JK, Matyjaszewski K. ATRP in the design of functional materials for biomedical applications. Prog Polym Sci 2012;37:18–37
  • Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer: The raft process. Macromolecules 1998;31:5559–62
  • Moad G, Rizzardo E, Thang SH. Living radical polymerization by the raft process. Austral J Chem 2005;58:379–410

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.