2,312
Views
82
CrossRef citations to date
0
Altmetric
Review Articles

Use of bacterial magnetosomes in the magnetic hyperthermia treatment of tumours: A review

, , &
Pages 801-809 | Received 02 May 2013, Accepted 28 Jun 2013, Published online: 11 Sep 2013

References

  • Jordan A, Scholz R, Maier-Hauff K, Van Landeghem FK, Waldoedner N, Teichgraeber U, et al. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 2006;78:7–14
  • Ito A, Tanaka K, Kondo K, Shinkai M, Honda H, Matsumoto K, et al. Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Sci 2003;94:308–13
  • Zhao Q, Wang L, Cheng R, Mao L, Arnold RD, Howerth E W, et al. Magnetic nanoparticle-based hyperthermia for head and neck cancer in mouse models. Theranostics 2012;2:113–21
  • Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 2011;103:317–24
  • Bazylinski DA, Frankel RB. Magnetosome formation in prokaryotes. Nature Rev Microbiol 2004;2:217–30
  • Alphandéry E, Faure S, Seksek O, Guyot F, Chebbi I. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano 2011;5:6279–96
  • Alphandéry E, Guyot F, Chebbi I. Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia. Int J Pharm 2012;434:444–52
  • Sun J-B, Zhao F, Tang T, Jiang W, Tian J-S, Li J-L. High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air. Appl Microbiol Biotechnol 2008;79:389–97
  • Liu Y, Li GR, Jiang W, Li Y, Li LJ. Large-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density. Microb Cell Fact 2010;9:99
  • Zhang Y, Zhang X, Jiang W, Li Y, Li J. Semicontinuous culture of Magnetospirillum gryphiswaldense MSR-1 cells in an autofermentor by nutrient-balanced and isosmotic feeding strategies. Appl Environ Microbiol 2011;77:5851–6
  • Heyen U, Schüler D. Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl Microbiol Biotechnol 2003;61:536–44
  • Matsunaga T, Tadokoro F, Nakamura N. Mass culture of magnetic bacteria and their application to flow type immunoassays. IEEE Trans Magn 1990;26:1557–9
  • Matsunaga T, Tsujimura N, Kamiya S. Enhancement of magnetic particle production by nitrate and succinate fed-batched culture of Magnetospirillum sp. AMB-1. Biotechnol Tech 1996;10:495–500
  • Yang C-D, Takeyama H, Tanaka T, Matsunaga T. Effects of growth medium composition, iron sources and atmospheric oxygen concentrations on production of luciferase-bacterial magnetic particle complex by a recombinant Magnetospirillum magneticum AMB-1. Enzyme Microbila Technol 2001;29:13–19
  • Alphandéry E, Amor M, Guyot F, Chebbi I. The effects of iron-chelating agents on Magnetospirillum magneticum strain AMB-1: Stimulated growth and magnetosome production and improved magnetosome heating properties. Appl Micriobiol Biotechnol 2012;96:663–70
  • Philipse AP, Maas D. Magnetic colloids from magnetotactic bacteria: Chain formation and colloidal stability. Langmuir 2002;18:9977–84
  • Sun J-B, Duan J-H, Dai S-L, Ren J, Guo L, Jiang W, Li Y. Preparation and anti-tumor efficiency evaluation of doxorubicin-loaded bacterial magnetosomes: Magnetic nanoparticles as drug carriers isolated from Magnetospirillum gryphiswaldense. Biotechnol Bioeng 2008;101:1313–20
  • Taoka A, Asada R, Sasaki H, Anzawa K, Wu LF, Fukumori Y. Spatial localizations of Mam22 and Mam12 in the magnetosomes of Magnetospirillum magnetotacticum. J Bacteriol 2006;188:3805–12
  • Matsunaga T, Maeda Y, Yoshino T, Takeyama H, Takahashi M, Ginya H, et al. Fully automated immunoassay for detection of prostate-specific antigen nano-magnetic beads and micro-polystyrene bead composites, ‘Beads on Beads’. Anal Chim Acta 2007;597:331–9
  • Grünberg K, Müller E-C, Otto A, Reska R, Linder D, Kube M, et al. Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 2004;70:1040–50
  • Xiang L, Wei J, Jianbo S, Gulli W, Feng G, Ying L. Purified and sterilized magnetosomes from Magnetospirillum gryphiswaldense MSR-1 were not toxic to mouse fibroblasts in vitro. Lett Appl Microbiol 2007;45:75–81
  • Guo F, Liu Y, Chen Y, Tang T, Jiang W, Li Y, Li J. A novel rapid and continuous procedure for large-scale purification of magnetosomes from Magnetospirillum gryphiswaldense. Appl Microbiol Biotechnol 2011;90:1277–83
  • Tang T, Zhang L, Gao R, Dai Y, Meng F, Li Y. Fluorescence imaging and targeted distribution of bacterial magnetic particles in nude mice. Appl Microbiol Biotechnol 2012;94:495–503
  • Kobayashi A, Kirschvink J, Nash CZ, Kopp RE, Sauer DA, Bertani LE, et al. Experimental observation of magnetosome chain collapse in magnetotactic bacteria: Sedimentological paleomagnetic, and evolutionary implications. Earth Planet Sci Lett 2006;245:538–50
  • Grünberg K, Wawer C, Tebo BM, Schüler D. A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol 2001;67:4573–82
  • Sun J-B, Duan J-H, Dai S-L, Ren J, Zhang Y-D, Tian J-S, Li Y. In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: The magnetic bio-nanoparticles as drug carriers. Cancer Lett 2007;258:109–17
  • Gorby YA, Beveridge TJ, Blakemore RP. Characterization of the bacterial magnetosome membrane. J Bacteriol 1988;170:834–41
  • Alphandéry E, Ngo AT, Lefèvre C, Lisiecki I, Wu LF, Pileni MP. Difference between the magnetic properties of the magnetotactic bacteria and those of the extracted chains of magnetosomes: Influence of the distance between the chains of magnetosomes. J Phys Chem C 2008;112:12304–9
  • Sun J, Tang T, Duan J, Xu P-X, Wang Z, Zhang Y, et al. Biocompatibility of bacterial magnetosomes: Acute toxicity, immunotoxicity and cytotoxicity. Nanotoxicology 2010;4:271–83
  • Alphandéry E, Carvollo C, Menguy N, Chebbi I. Chains of cobalt doped magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. J Phys Chem C 2011;115:11920–4
  • Guo FF, Yang W, Jiang W, Geng S, Peng T, Li JL. Magnetosomes eliminate intracellular reactive oxygen species in Magnetospirillum gryphiswaledense MSR-1. Environ Microbiol 2012;14:1722–9
  • Liu R-T, Liu J, Tong J-Q, Tang T, Kong W-C, Wang X-W, et al. Heating effect and biocompatibility of bacterial magnetosomes as potential materials used in magnetic fluid hyperthermia. Prog Nat Sci Mater Int 2012;22:31–9
  • Sun J-B, Wang Z-L, Duan J-H, Ren J, Yang X-D, Dai S-L, et al. Targeted distribution of bacterial magnetosomes isolated from Magnetospirillum gryphiswaldense MSR-1 in healthy Sprague-Dawley rats. J Nanosci Nanotechnol 2009;9:1881–5
  • Lacava LM, Garcia VAP, Kückelhaus S, Azevedo RB, Sadeghiani N, Buske N, et al. Long-term retention of dextran-coated magnetite nanoparticles in the liver and spleen. J Magn Magn Mater 2004;272:2434–5
  • Timko M, Dzarova A, Skumiel A, Jozefcak A, Hornowski T, Gojzewski H, et al. Magnetic properties and heating effect in bacterial magnetic nanoparticles. J Magn Magn Mater 2009;321:1521–4
  • Timko M, Molcan M, Hashim A, Skumiel A, Muller M, Gojzewski H, et al. Hyperthermic effect in suspension of magnetosomes prepared by various methods. IEE Trans Magn 2013;49:250–4
  • Hergt R, Dutz S, Roder M. Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys Condens Matter 2008;20:385214--25
  • Hergt R, Hiergeist R, Zeisberger M, Schüler D, Heyen U, Hilger I, et al. Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J Magn Magn Mater 2005;293:80–6
  • Dutz S, Hergt R, Mürbe J, Müller R, Zeisberger M, Andrä W, et al. Hysteresis losses of magnetic nanoparticle powders in the single domain size range. J Magn Magn Mater 2007;308:305–12
  • Alphandéry E, Faure S, Raison L, Duguet E, Howse PA, Bazylinski DA. Heat production by bacterial magnetosomes exposed to an oscillating magnetic field. J Phys Chem C 2011;115:18–22
  • Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 2002;252:370–4
  • Scheffel A, Gruska M, Faivre D, Linaroudis A, Grumann P, Plitzko JM, et al. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 2006;440:110–14
  • Alphandéry E, Chebbi I, Faure S. Treatment of cancer or tumor induced by the release of heat generated by various chains of magnetosomes extracted from magnetotactic bacteria and submitted to an alternative magnetic field. Patent WO2011/061259. First submission Nov 2009
  • Alphandéry E, Ding Y, Ngo AT, Wang ZL, Wu LF, Pileni MP. Assemblies of aligned magnetotactic bacteria and extracted magnetosomes: What is the main factor responsible for the magnetic anisotropy? ACS Nano 2009;3:1539–47

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.