1,377
Views
14
CrossRef citations to date
0
Altmetric
Review Article

Quality assurance for clinical high intensity focused ultrasound fields

, &
Pages 193-202 | Received 05 Nov 2014, Accepted 22 Dec 2014, Published online: 13 Feb 2015

References

  • ter Haar GR, Coussios CC. High intensity focused ultrasound: Past, present and future. Int J Hyperthermia 2007;23:85–7
  • Illing RO, Kennedy JE, Wu F, ter Haar GR, Protheroe AS, Friend J, et al. The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a western population. Br J Cancer 2005;93:890–5
  • Crouzet S, Murat FJ, Pasticier G, Cassier P, Chapelon JY, Gelet A. High intensity focused ultrasound (HIFU) for prostate cancer: Current clinical status, outcomes and future perspectives. Int J Hyperthermia 2010;26:796–803
  • Dubinsky TJ, Cuevas C, Dighe MK, Kolokythas O, Hwang JH. High-intensity focused ultrasound: Current potential and oncologic applications. Am J Roentgenology 2008;190:191–9
  • Xiong LL, Hwang JH, Huang XB, Yao SS, He CJ, Ge XH, et al. Early clinical experience using high intensity focused ultrasound for palliation of inoperable pancreatic cancer. J Pancreas 2009;10:123–9
  • Frenkel V. Ultrasound mediated delivery of drugs and genes to solid tumours. Adv Drug Del Rev 2008;60:1193–208
  • Ranjan A, Jacobs GC, Woods DL, Nwgussie AH, Partanen A, Yarmolenko PS, et al. Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model. J Control Release 2012;158:487–94
  • De Smet M, Heljman E, Langereis S, Hijnen NM, Grull H. Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: An in-vivo proof-of-concept study. J Control Release 2011;150:102–10
  • Hill CR. Optimum acoustic frequency for focused ultrasound surgery. Ultrasound Med Biol 1994;20:271–7
  • Kennedy JE, Wu F, ter Haar GR, Gleeson FV, Phillips RR, Middleton MR, et al. High-intensity focused ultrasound for the treatment of liver tumours. Ultrasonics 2004;42:931–5
  • Voogt MJ, Trillaud H, Kim YS, Mali WPTM, Barkhausen J, Bartels LW, et al. Volumetric feedback ablation of uterine fibroids using magnetic resonance-guided high intensity focused ultrasound therapy. Eur Radiol 2012;22:411–17
  • Wu F, Wang ZB, Chen WZ, Zhu H, Bai J, Zou JZ, et al. Extracorporeal high intensity focused ultrasound ablation in the treatment of patients with large hepatocellular carcinoma. Ann Surg Oncol 2004;11:1061–9
  • Daum DR, Hynynen K. A 256-element ultrasonic phased array system for the treatment of large volumes of deep seated tissue. IEEE Trans Ultrason Ferroelectr Freq Contol 1999;46:1254–68
  • Bobkova S, Gavrilov L, Khokhlova V, Shaw A, Hand J. Focusing of high-intensity ultrasound through the rib cage using a therapeutic random phased array. Ultrason Med Biol 2010;36:888–906
  • Pernot M, Aubry JF, Tanter M, Thomas JL, Fink M. High power transcranial beam steering for ultrasonic brain therapy. Phys Med Biol 2003;48:2577–89
  • Auboiroux V, Dumont E, Petrusca L, Viallon M, Salomir R. An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy. Phys Med Biol 2011;56:3563–82
  • Civale J, Clarke R, Rivens I, ter Haar GR. The use of a segmented transducer for rib sparing in HIFU treatments. Ultrasound Med Biol 2006;32:1753–61
  • Aubry JF, Pernot M, Marquet F, Tanter M, Fink M. Transcostal high-intensity-focused ultrasound: Ex vivo adaptive focusing feasibility study. Phys Med Biol 2008;53:2937–51
  • ter Haar GR, Shaw A, Pye S, Ward B, Bottomley F, Nolan R, Coady A. Guidance on reporting ultrasound exposure conditions for bio-effects studies. Ultrasound Med Biol 2011;37:177–83
  • O’Neil HT. Theory of focusing radiators. J Acoust Soc Am 1949;21:516–26
  • Li JJ, Gu MF, Luo GY, Liu LZ, Zhang R, Xu GL. Complications of high intensity focused ultrasound for patients with hepatocellular carcinoma. Technol Cancer Res Treatment 2009;8:217–24
  • Bamber JC, Hill CR. Ultrasonic attenuation and propagation speed in mammalian tissues as a function of temperature. Ultrasound Med Biol 1979;5:149–57
  • Vaezy S, Shi X, Martin RW, Chi E, Nelson PI, Bailey MR, et al. Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging. Ultrasound Med Biol 2001;27:33–42
  • Rabkin B, Zderic V, Vaezy S. Hyperecho in ultrasound images of HIFU therapy: Involvement of cavitation. Ultrasound Med Biol 2005;31:947–56
  • Liu D, Ebbini ES. Real-time 2-D temperature imaging using ultrasound. IEEE Biomed Engineering 2010;57:12–16
  • Seip R, Ebbini ES. Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound. IEEE Biomed Engineering 1995;42:828–39
  • Civale J, Rivens I, ter Haar G, Morris H, Coussios C, Friend P, et al. Calibration of ultrasound backscatter temperature imaging for high-intensity focused ultrasound treatment planning. Ultrasound Med Biol 2013;39:1596–612
  • Kolen AF, Miller NR, Ahmed EE, Bamber JC. Characterization of cardiovascular liver motion for the eventual application of elasticity imaging to the liver in vivo. Phys Med Biol 2004;49:4187–206
  • Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, Suzuki Y. A precise and fast temperaturemapping using water proton chemical shift. Magn Reson Med 1995;34:814–23
  • IEC 62555 ed1.0: Ultrasonics – Power measurement – High intensity therapeutic ultrasound (HITU) transducers and systems. Geneva: International Electrotechnical Commission 2014
  • IEC/TS 62556, ed1.0: Ultrasonics – Surgical systems – Specification and measurement of field parameters for High Intensity Therapeutic Ultrasound (HITU) transducers and systems. Geneva: International Electrotechnical Commission 2014
  • IEC 61161, ed3.0: Ultrasonics – Power measurement – Radiation force balances and performance requirements. Geneva: International Electrotechnical Commission 2013
  • IEC 62127-1 ed1.0: Ultrasonics – Hydrophones – Part 1: Measurement and characterization of medical ultrasonic fields up to 40 MHz. Geneva: International Electrotechnical Commission 2007
  • Preston RC. Output Measurement for Medical Ultrasound. London: Springer-Verlag, 1991
  • Zanelli CI, Howard SM. A robust hydrophone for HIFU metrology. Am Inst Phys 5th Int Symp Therapeut Ultrasound, 2006;829:618–22
  • Staudenraus J, Eisenmenger W. Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water. Ultrasonics 1993;31:267–73
  • Beard PC, Mills TN. Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer. Applied Optics 1996;35:663–75
  • Morris P, Hurrell A, Shaw A, Zhang E, Bear P. A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure. J Acoust Soc Am 2009;125:3611–22
  • Haller J, Jenderka KV, Durando G, Shaw A. A comparative evaluation of three hydrophones and a numerical model in high intensity focused ultrasound fields. J Acoust Soc Am 2012;131:1121–30
  • Canney MS, Khokhlova VA, Bessonova OV, Bailey MR, Crum LA. Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound. Ultrasound Med Biol 2010;36:250–67
  • Beissner K. Maximum hydrophone size in ultrasound field measurements. Acustica 1985;59:61–6
  • Wear KA, Gammell PM, Maruvada S, Liu Y, Harris GR. Improved measurement of acoustic output using complex deconvolution of hydrophone sensitivity. IEEE Trans Ultrason Ferroelectr Freq Control 2014;61:62–75
  • Haller J, Wilkens V, Jenderka K, Koch C. Characterization of a fiber-optic displacement sensor for measurements in high-intensity focused ultrasound fields. J Acoust Soc Am 2011;129:3676–81
  • Kreider W, Yuldashev PV, Sapozhnikov OA, Farr N, Partanen A, Bailey MR, et al. Characterization of a multi-element clinical HIF?U system using acoustic holography and nonlinear modelling. IEEE Trans Ultrason Ferroelectr Freq Control 2013;60:1683–98
  • Torr GR. The acoustic radiation force. Am J Phys 1984;52:402–8
  • Davidson F. Ultrasonic power balances. In: Preston RC, ed. Output measurements for medical ultrasound. London: Springer Verlag, 1991, pp. 75–89
  • Brendel K. Molkenstruck W. Reibold R. Targets for ultrasonic power measurements. In: Proc 3rd Eur Congress on Ultrasonics in Medicine, Edizioni Centro Minerva Medica, Bologna 1978, p. 473
  • Beissner, K. Minimum target size in radiation force measurements. J Acoust Soc Am 1984;76:1505–10
  • Herman BA, Stewart HF. An ultrasonic radiation calorimeter. J Acoust Soc Am 1973;53:341
  • Delchar TA, Melvin RJ. A calorimeter for ultrasound total power measurements. Meas Sci Technology 1994;5:1533–7
  • Shaw A. A buoyancy method for the measurement of total ultrasound power generated by HIFU transducers. Ultrasound Med Biol 2008;34:1327–42
  • Hekkenberg RT, Beissner K, Zeqiri B, Bezemer RA, Hodnett M. Validated ultrasonic power measurements up to 20 W. Ultrasound Med Biol 2001;27:427–38
  • Shotton KC. A tethered float radiometer for measuring the output from therapy equipment. Ultrasound Med Biol 1980;6:131–3
  • Hill CR, Rivens I, Vaughan MG, ter Haar GR. Lesion development in focused ultrasound surgery: A general model. Ultrasound Med Biol 1994;20:259–69
  • Shaw A, Hodnett M. Measurement and calibration issues for therapeutic ultrasound. Ultrasonics 2008;48:234–52
  • Sutton Y, Shaw A, Zeqiri B. Measurement of ultrasonic power using an acoustically absorbing well. Ultrasound Med Biol 2003;29:1507–13
  • Maruvada S, Harris GR, Herman BA, King RL. Acoustic power calibration of high-intensity focused ultrasound transducers using a radiation force technique. J Acoust Soc Am 2007;121:1431–9
  • Rajagopal S, Shaw A. Buoyancy method – A potential new primary ultrasound power standard. Metrologia 2012;49:327–39
  • Dabbagh A, Abdullah BJ, Abu Kasim NH, Ramasindarum C. Reusable heat-sensitive phantom for precise estimation of thermal profile in hyperthermia application. Int J Hyperthermia 2014;30:66–74
  • Lafon C, Zderic V, Noble ML, Yuen JC, Kaczkowski PJ, Sapozhnikov OA, et al. Gel phantom for use in high-intensity focused ultrasound dosimetry. Ultrasound Med Biol 2005;31:1383–9
  • Divkovic GW, Liebler M, Braun K, Dreyer T, Huber PE, Jenne JW. Thermal properties and changes of acoustic parameters in an egg white phantom during heating and coagulation by high intensity focused ultrasound. Ultrasound Med Biol 2007;33:981–6
  • Park SK, Guntur SR, Lee KI, Paeng DG, Choi MJ. Reusable ultrasonic tissue mimicking hydrogels containing nonionic surface-active agents for visualizing thermal lesions. IEEE Trans Biomed Eng 2010;57:194–202
  • Shaw A, Nunn J. The feasibility of an infrared system for real-time visualization and mapping of ultrasound fields. Phys Med Biol 2010;55:N321
  • Hand JW, Shaw A, Sadhoo N, Rajagopal S, Dickinson RJ, Gavrilov LR. A random phased array device for delivery of high intensity focused ultrasound. Phys Med Bio 2009;54:5675–93
  • Bobkova S, Gavrilov LR, Khokhlova V, Shaw A, Hand J. Focusing of high-intensity ultrasound through the rib cage using a therapeutic random phased array. Ultrasound Med Biol 2010;36:888–906
  • Khokhlova V, Shmeleeva S, Gavrilov L, Gelat PN, Martin EM, Shaw A. Infrared mapping of ultrasound fields generated by medical transducers: Feasibility of determining absolute intensity levels. J Acoust Soc Am 2013;134:1586–97
  • Martin K, Fernandez R. A thermal beam-shape phantom for ultrasound physiotherapy transducers. Ultrasound Med Biol 1997;23:1267–74
  • Butterworth I1, Barrie J, Zeqiri B, Žauhar G, Parisot B. Exploiting thermochromic materials for the rapid quality assurance of physiotherapy ultrasound treatment heads. Ultrasound Med Biol 2012;38:767–76
  • Gutierrez MI, Leija L, Vera A. Therapy ultrasound equipment characterization: Comparison of three techniques. Conf Proc IEEE Eng Med Biol Soc 2008;5117–20
  • Christensen DA, Chao A. A pulsed Schlieren system for visualizing beams from phased-array HIFU applicators. In: AIP Conf Proc 6th Int Symp Therapeut Ultrasound 2007;911:15–19
  • Kudo N, Ouchi H, Yamamoto K, Sekimizu H. A simple Schlieren system for visualizing a sound field of pulsed ultrasound. J Phys Conf Ser 2004;1:146–9
  • Song J, Hynynen K. Feasibility of using lateral mode coupling method for a large scale ultrasound phased array for noninvasive transcranial therapy. IEEE Trans Biomed Eng 2010;57:124–33
  • Wang Y, Tyrer J, Zhihong P, Shiquan W. Measurement of focused ultrasonic fields using a scanning laser vibrometer. J Acoust Soc Am 2007;121:2621–7
  • Shaw A, ter Haar GR. Telling it like it is. J Therapeutic Ultrasound 2013;1:4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.