1,164
Views
42
CrossRef citations to date
0
Altmetric
Physics/Engineering

Hyperthermia treatment planning for cervical cancer patients based on electrical conductivity tissue properties acquired in vivo with EPT at 3 T MRI

, , , , , , , , & show all
Pages 558-568 | Received 14 Sep 2015, Accepted 04 Dec 2015, Published online: 16 Mar 2016

References

  • Overgaard J, Gonzalez Gonzalez D, Hulshof MC, Arcangeli G, Dahl O, Mella O, et al. Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. European Society for Hyperthermic Oncology. Lancet 1995;345(8949):540–3.
  • van der Zee J, González González D, van Rhoon GC, van Dijk JD, van Putten WL, Hart AA. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: A prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet 2000;355(9210):1119–25.
  • Issels RD, Lindner LH, Verweij J, Wust P, Reichardt P, Schem B-C, et al. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: A randomised phase 3 multicentre study. Lancet Oncol 2010;11:561–70.
  • Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues. II: Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 1996;41:2251–69.
  • Gabriel C. Compilation of the dielectric properties of body tissues at rf and microwave frequencies. Brooks Air Force Tech Rep 1996;AL/OE-TR:0037.
  • Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 1996;41:2231–49.
  • O’Rourke AP, Lazebnik M, Bertram JM, Converse MC, Hagness SC, Webster JG, et al. Dielectric properties of human normal, malignant and cirrhotic liver tissue: In vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe. Phys Med Biol 2007;52:4707–19.
  • Van De Kamer JB, Van Wieringen N, De Leeuw a a C, Lagendijk JJW. The significance of accurate dielectric tissue data for hyperthermia. Int J Hyperthermia 2001;17:123–42.
  • de Greef M, Kok HP, Correia D, Borsboom P-P, Bel A, Crezee J. Uncertainty in hyperthermia treatment planning: The need for robust system design. Phys Med Biol 2011;56:3233–50.
  • Canters RAM, Paulides MM, Franckena M, Mens JW, van Rhoon GC. Benefit of replacing the Sigma-60 by the Sigma-Eye applicator. A Monte Carlo-based uncertainty analysis. Strahlenther Onkol 2013;189:74–80.
  • Christ A, Gosselin M-C, Christopoulou M, Kühn S, Kuster N. Age-dependent tissue-specific exposure of cell phone users. Phys Med Biol 2010;55:1767–83.
  • Murbach M, Neufeld E, Kainz W, Pruessmann KP, Kuster N. Whole-body and local RF absorption in human models as a function of anatomy and position within 1.5 T MR body coil. Magn Reson Med 2013;845:839–45.
  • Kwon OI, Chauhan M, Kim HJ, Jeong WC, Wi H, Oh TI, et al. Fast conductivity imaging in magnetic resonance electrical impedance tomography (MREIT) for RF ablation monitoring. Int J Hyperthermia 2014;30:447–55.
  • Fu F, Xin SX, Chen W. Temperature- and frequency-dependent dielectric properties of biological tissues within the temperature and frequency ranges typically used for magnetic resonance imaging-guided focused ultrasound surgery. Int J Hyperthermia 2014;30:56–65.
  • Farace P, Pontalti R, Cristoforetti L, Antolini R, Scarpa M. An automated method for mapping human tissue permittivities by MRI in hyperthermia treatment planning. Phys Med Biol 1997;42:2159–74.
  • Mazzurana M, Sandrini L, Vaccari A, Malacarne C, Cristoforetti L, Pontalti R. A semi-automatic method for developing an anthropomorphic numerical model of dielectric anatomy by MRI. Phys Med Biol 2003;48:3157–70.
  • Pethig R. Dielectric properties of biological materials: biophysical and medical applications. IEEE Trans Electr Insul 1984;EI-19:453–74.
  • Haacke EM, Petropoulos LS, Nilges EW, Wu DH. Extraction of conductivity and permittivity using magnetic resonance imaging. Phys Med Biol 1991;36:713–34.
  • Katscher U, Voigt T, Findeklee C, Vernickel P, Nehrke K, Dössel O. Determination of electric conductivity and local SAR via B1 mapping. IEEE Trans Med Imaging 2009;28:1365–74.
  • Liu J, Zhang X, Schmitter S, Van de Moortele P-F, He B. Gradient-based electrical properties tomography (gEPT): A robust method for mapping electrical properties of biological tissues in vivo using magnetic resonance imaging. Magn Reson Med 2015;74:634–46.
  • van Lier AL, Raaijmakers A, Voigt T, Lagendijk JJ, Luijten PR, Katscher U, van den Berg CA. Electrical properties tomography in the human brain at 1.5, 3, and 7 T: A comparison study. Magn Reson Med 2014;71:354–63.
  • Balidemaj E, Van Lier ALHMW, Crezee H, Nederveen AJ, Stalpers LJA, Van Den Berg CAT. Feasibility of electric property tomography of pelvic tumors at 3 T. Magn Reson Med 2014;73:1505–13.
  • Lin JC. Advances in electromagnetic fields in living systems. Vol. 4. New York, NY: Springer; 2005.
  • Joines WT, Zhang Y, Li C JR. The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz. Med Phys Phys 1994;21:547–50.
  • Surowiec AJ, Stuchly SS, Barr JB, Swarup A. Dielectric properties of breast carcinoma and the surrounding tissues. IEEE Trans Biomed Eng 1988;35:257–63.
  • Stauffer PR, Rossetto F, Prakash M, Neuman DG, Lee T. Phantom and animal tissues for modelling the electrical properties of human liver. Int J Hyperthermia 2003;19:89–101.
  • Haemmerich D, Staelin ST, Tsai JZ, Tungjitkusolmun S, Mahvi DM, Webster JG. In vivo electrical conductivity of hepatic tumours. Physiol Meas 2003;24:251–60.
  • Keshtkar A, Salehnia Z, Keshtkar A, Shokouhi B. Bladder cancer detection using electrical impedance technique (Tabriz Mark 1). Patholog Res Int 2012;470101.
  • Lu Y, Li B, Xu J, Yu J. Dielectric properties of human glioma and surrounding tissue. Int J Hyperthermia 1992;8:755–60.
  • Peyman A, Gabriel C. Dielectric properties of porcine glands, gonads and body fluids. Phys Med Biol 2012;57:N339–44.
  • Yuan Y, Cheng K-S, Craciunescu OI, Stauffer PR, Maccarini PF, Arunachalam K, et al. Utility of treatment planning for thermochemotherapy treatment of nonmuscle invasive bladder carcinoma. Med Phys 2012;39:1170–81.
  • Balidemaj E., de Boer P., van Lier ALHMW., Remis RF., Stalpers LJA., Westerveld GH., Nederveen AJ, van den Berg CAT and Crezee J In vivo electric conductivity of cervical cancer patients based on maps at 3T MRI. Physics in Medicine and Biology 2016;61:1596-1607.
  • Hornsleth S, Mella O, Dahl O. A new segmentation algorithm for finite difference based treatment planning systems. Hyperthermic Oncol 1996;2:521–3.
  • James BJ, Sullivan DM. Direct use of CT scans for hyperthermia treatment planning. IEEE Trans Biomed Eng 1992;39:845–51.
  • Taflove A, Hagness SC. Computational electrodynamics: The finite-difference time-domain method. 2nd ed. Norwood (MA): Artech; 2000.
  • van Dijk JDP, Schneider CJ, van Os R, Blank LECM, Gonzalez DG. Results of deep body hyperthermia with large waveguide radiators. Adv Exp Med Biol 1990;267:315–19.
  • Crezee J, Van Haaren PM, Westendorp H, De Greef M, Kok HP, Wiersma J, et al. Improving locoregional hyperthermia delivery using the 3-D controlled AMC-8 phased array hyperthermia system: a preclinical study. Int J Hyperthermia 2009;25:581–92.
  • Das SK, Clegg ST, Samulski TV. Computational techniques for fast hyperthermia temperature optimization. Med Phys 1999;26:319–28.
  • Tsuda N, Kuroda K, Suzuki Y. An inverse method to optimize heating conditions in RF-capacitive hyperthermia. IEEE Trans Biomed Eng 1996;43:1029–37.
  • Kok HP, Van Haaren PM, Van de Kamer JB, Wiersma J, Van Dijk JDP, Crezee J. High-resolution temperature-based optimization for hyperthermia treatment planning. Phys Med Biol 2005;50:3127–41.
  • Pennes H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1948;1:93–122.
  • Hasgall P, Di Gennaro F, Baumgartner C, Neufeld E, Gosselin M, Payne D, et al. IT’IS database for thermal and electromagnetic parameters of biological tissues, Version 2.6, January 13th, 2015. Available at www.itis.ethz.ch/database
  • ESHO Taskgroup Committee 1992 Treatment planning and modelling in hyperthermia Task Group Report of the European Society for Hyperthermic Oncology. Rome (Italy): Tor Vergata; 1992.
  • Kok HP, de Greef M, Wiersma J, Bel A, Crezee J. The impact of the waveguide aperture size of the 3D 70 MHz AMC-8 locoregional hyperthermia system on tumour coverage. Phys Med Biol 2010;55:4899–916.
  • Lawrence C, Zhou JL, Tits AL. User’s guide for CFSQP version 2.5: A C code for solving (large scale) constrained nonlinear (minimax) optimization problems, generating iterates satisfying all inequality constraints. College Park (MD): Electrical Engineering Department and Institute for Systems Research University of Maryland; 1999, pp 1–73.
  • van Lier ALHMW, Brunner DO, Pruessmann KP, Klomp DWJ, Luijten PR, Lagendijk JJW, et al. B1(+) phase mapping at 7 T and its application for in vivo electrical conductivity mapping. Magn Reson Med 2012;67:552–61.
  • Voigt T, Katscher U, Doessel O. Quantitative conductivity and permittivity imaging of the human brain using electric properties tomography. Magn Reson Med 2011;66:456–66.
  • Andreuccetti D, Fossi R, Petrucci C. An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz–100 GHz. Florence (Italy): IFAC-CNR; 1997. Available at http://niremf.ifac.cnr.it/tissprop/.
  • Kavukcu S, Turkmen M, Faculty M. Could conductivity be used as a parameter in grinalaysis? J Pakistan Med Assoc 1998;48:238–40.
  • Fazil Marickar YM. Electrical conductivity and total dissolved solids in urine. Urol Res 2010;38:233–5.
  • Grimmes S, Martinsen OG. Bioimpedance and bioelectricity basics. Amsterdam: Elsevier; 2008.
  • Schooneveldt G, Kok HP, Geijsen ED, van Ommen F, Bakker A, de La Rosette JJMCH, et al. Improved temperature monitoring and treatment planning for loco-regional hyperthermia treatments of non-muscle invasive bladder cancer (NMIBC). Proc World Congr Med Phys Biomed Eng 2015;51:1691–4.
  • Schwan HP, Piersol GM. The absorption of electromagnetic energy in body tissues, Part I. J Phys Med 1954;33:371–404.
  • Andreasen D, Van Leemput K, Hansen RH, Andersen JA, Edmund JM. Patch-based generation of a pseudo CT from conventional MRI sequences for MRI-only radiotherapy of the brain. Med Phys 2015;42:1596–605.
  • Edmund JM, Kjer HM, Van Leemput K, Hansen RH, Andersen J Al, Andreasen D. A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times. Phys Med Biol 2014;59:7501–19.
  • Lambert J, Greer PB, Menk F, Patterson J, Parker J, Dahl K, et al. MRI-guided prostate radiation therapy planning: Investigation of dosimetric accuracy of MRI-based dose planning. Radiother Oncol 2011;98:330–4.
  • Restivo MC, van den Berg CA, van Lier AL, Polders DL, Raaijmakers AJ, Luijten PR, Hoogdui H. Local specific absorption rate in brain tumors at 7 Tesla. Magn Reson Med 2015. PMID 25752920.
  • Schmid G, Neubauer G, Illievich UM, Alesch F. Dielectric properties of porcine brain tissue in the transition from life to death at requencies from 800 to 1900 MHz. Bioelectromagnetics 2003;24:413–22.
  • Kraszewski A, Stuchly MA, Stuchly SS, Smith A. In vivo and in vtiro dielectric properties of animal tissues at radio frequencies. Bioelectromagnetics 1982;3:421–32.
  • Komarov V, Wang S, Tang J. “Permittivity and Measurements” in Encyclopedia of RF and Microwave Engineering. K. Chang (ed.), Hoboken, NJ: Wiley, 2005, pp.19.
  • Dillon CR, Payne A, Christensen DA, Roemer RB. The accuracy and precision of two non-invasive, magnetic resonance-guided focused ultrasound-based thermal diffusivity estimation methods. Int J Hyperthermia 2014;30:362–71.
  • Fujita S, Tamazawa M, Kuroda K. Effects of blood perfusion rate on the optimization of RF-capacitive hyperthermia. IEEE Trans Biomed Eng 1998;45:1182–6.
  • Seebass M, Beck R, Gellermann J, Nadobny J. Electromagnetic phased arrays for regional hyperthermia: Optimal frequency and antenna arrangement. Int J Hyperthermia 2001;17:321–36.
  • Gellermann J, Göke J, Figiel R, Weihrauch M, Cho CH, Budach V, et al. Simulation of different applicator positions for treatment of a presacral tumour. Int J Hyperthermia 2007;23:37–47.
  • Canters RA, Franckena M, Paulides MM, Van Rhoon GC. Patient positioning in deep hyperthermia: Influences of inaccuracies, signal correction possibilities and optimization potential. Phys Med Biol 2009;54:3923–36.
  • De Greef M, Kok HP, Bel A, Crezee J. 3D versus 2D steering in patient anatomies: A comparison using hyperthermia treatment planning. Int J Hyperthermia 2011;27:74–85.
  • Bakker JF, Paulides MM, Christ A, Kuster N, van Rhoon GC. Assessment of induced SAR in children exposed to electromagnetic plane waves between 10 MHz and 5.6 GHz. Phys Med Biol 2011;55:3115–30.
  • Verhaart R, Fortunati V, Verduijn GM, van Walsum T, Veenland JF, Paulides MM. CT-based patient modeling for head and neck hyperthermia treatment planning: Manual versus automatic normal-tissue-segmentation. Radiother Oncol 2014;111:158–63.
  • Van den Berg C a T, Van de Kamer JB, De Leeuw A a C, Jeukens CRLPN, Raaymakers BW, van Vulpen M, et al. Towards patient specific thermal modelling of the prostate. Phys Med Biol 2006;51:809–25.
  • Inman BA, Stauffer PR, Craciunescu OA, Maccarini PF, Dewhirst MW, Vujaskovic Z. A pilot clinical trial of intravesical mitomycin-C and external deep pelvic hyperthermia for non-muscle invasive bladder cancer. Int J Hyperthermia 2014;30:171–5.
  • Geijsen ED, de Reijke TM, Koning CC, Zum Vörde Sive Vörding PJ, de la Rosette JJ, Rasch CR, et al. Combining mitomycin C and regional 70 MHz hyperthermia in patients with non-muscle invasive bladder cancer: a pilot study. J Urol 2015:1202–8.
  • Juang T, Stauffer PR, Craciunescu OA, Maccarini PF, Yuan Y, Das SK, et al. Thermal dosimetry characteristics of deep regional heating of non-muscle invasive bladder cancer. Int J Hyperthermia 2014;30:176–83.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.