71
Views
57
CrossRef citations to date
0
Altmetric
Original Article

Differential thermal sensitivity of tumour and normal tissue microvascular response during hyperthermia

, &
Pages 501-514 | Received 11 Oct 1991, Accepted 13 Feb 1992, Published online: 09 Jul 2009

References

  • Brown S. L., Hunt J. W., Hill R. P. A comparison of the rate of clearance of xenon (133Xe) and pertechnetate ion (99mTcO4−) in murine tumors and normal leg muscles. Nuclear Medicine and Biology 1988; 15: 381–390
  • Brown S. L., Li X. L., Pai H. H., Worthington A. E., Hill R. P., Hunt J. W. Observations of thermal gradients in perfused tissues during water bath heating. International Journal of Hyperthermia 1992; 8(2)275–287
  • Boucher Y., Baxter L. T., Jain R. K. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Research 1990; 50: 4478–4484
  • Chou C.-K. Phantoms for electromagnetic heating studies. Physics and Technology of Hyperthermia, Field, Franconi. Martinus Nijhoff, Boston 1987; 294–318
  • Dewey W. C., Freeman M. L. Rationale for the use of hyperthermia in cancer therapy. Annals of the New York Academy of Science 1980; 445: 372–378
  • Dudar T. E., Jain R. K. Differential response of normal and tumor microcirculation to hyperthermia. Cancer Research 1984; 44: 605–612
  • Field S. B., Morris C. C. The relationship between heating time and temperature: its relevance to clinical hyperthermia. Radiotherapy and Oncology 1983; 1: 179–186
  • Filmus J., Trent J. M., Pollack M. N., Buick R. N. Epidermal growth factor receptor gene-amplified MDA-468 breast cancer cell line and its nonamplified variants. Molecular and Cellular Biology 1987; 7: 251–257
  • Gerweck L. E. Effect of microenvironment factors on the response of cells to single and fractionated heat treatments. National Cancer Institute Monograph 1982; 61: 19–26
  • Hill S. A., Smith K. A., Denekamp J. Reduced thermal sensitivity of the vasculature in a slowly growing tumour. International Journal of Hyperthermia 1989; 5: 359–370
  • Kallman R. F., Silini G., van Putten L. M. Factors influencing the quantitative estimation of the in vivo survival of cells from solid tumours. Journal of the National Cancer Institute 1967; 39: 539–549
  • Kim S. H., Kim J. H., Hahn E. W., Ensign N. A. Selective killing of glucose and oxygen-deprived HeLa cells by hyperthermia. Cancer Research 1980; 40: 3459–3462
  • Lagenduk J. J. W., Hofman P., Schipper J. Perfusion analyses in advanced breast carcinoma during hyperthermia. International Journal of Hyperthermia 1988; 4: 479–495
  • Maeta M., Karino T., Inoue Y., Hamazoe R., Shimizu N., Koga S. The effect of angiotensin II on blood flow in tumours during localized hyperthermia. International Journal of Hyperthermia 1989; 5: 191–197
  • Newman W. H., Lele P. P., Bowman H. F. Limitations and significance of thermal washout data obtained during microwave and ultrasound hyperthermia. International Journal of Hyperthermia 1990; 6: 771–784
  • Nishimura Y., Shibamoto Y., Jo S., Akuta K., Hiraoka M., Takahashi M., Abe M. Relationship between heat-induced vascular damage and thermosensitivity in four mouse tumors. Cancer Research 1988; 48: 7226–7230
  • Olch A. J., Silberman A W., Storm F. K., Graham L. S., Morton D. L. The pharmacologic manipulation of blood flow in hyperthermia therapy. Journal of Surgical Oncology 1983; 24: 292–297
  • Patterson J., Strang R. The role of blood flow in hyperthermia. International Journal of Radiation Oncology, Biology and Physics 1979; 5: 235–241
  • Provencher S. W. A Fourier method for the analysis of exponential decay curves. Biophysics Journal 1976; 16: 27–41
  • Reinhold H. S., Endrich B. Tumour microcirculation as a target for hyperthermia. International Journal of Hyperthermia 1986; 2: 111–137
  • Siemann D. W., Hill R. P., Bush R. S. The importance of pre-irradiation breathing times of oxygen and carbogen (5% CO2: 95% O2) on the in vivo radiation response of a murine sarcoma. International Journal of Radiation Oncology, Biology and Physics 1977; 2: 903–911
  • Song C. W. Effect of local hyperthermia on blood flow and microenvironment: a Review. Cancer Research 1984; 44(Suppl)4721s–4730s
  • Song C. W., Lokshina A., Rhee J. G., Patten M., Levitt S. H. Implication of blood flow in hyperthermic treatment of tumors. IEEE Transactions on Biomedical Engineering 1984; BME-31(1): 9–16
  • Sutton C. H. Necrosis and altered blood flow produced by microwave-induced tumor hyperthermia in murine glioma. Proceedings of the 12th Annual Meeting of the American Society of Clinical Oncology 1976; 17: 63
  • Swain I. D., Grant L. J. Methods of measuring skin blood flow. Physics in Medicine and Biology 1989; 34: 151–175
  • Twentyman P. R., Brown J. M., Gray J. W., Franko A. J., Scoles M. A., Kallman R. F. A new mouse tumor model (RIF-1) for a comparison of endpoint studies. Journal of the National Cancer Institute 1980; 64: 595–604
  • Waterman F. M., Nerlinger R. E., Moylan I D. J., II, Leeper D. B. Response of human tumor blood flow to local hyperthermia. International Journal of Radiation Oncology, Biology and Physics 1987; 13: 75–82
  • Weinberg M. J., Lapointe T. A., Rauth M. Growth delay in a murine squamous cell tumor after local radiation and concurrrent infusional 5-Fluorouracil treatment. International Journal of Radiation Oncology, Biology and Physics 1986; 12: 1449–1452

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.