18
Views
17
CrossRef citations to date
0
Altmetric
Review Article

Winner of the Lund Science Award 1992 Thermosensitization induced by step-down heating: A review on heat-induced sensitization to hyperthermia alone or hyperthermia combined with radiation

Pages 561-586 | Received 26 Sep 1991, Accepted 18 Feb 1992, Published online: 09 Jul 2009

References

  • Amichetti M., Antolini R., Arcangeli G., Astrahan M., Bach andersen J., Bachshaw M. A., et al. International consensus meeting on hyperthermia, final report. International Journal of Hyperthermia 1990; 6: 837–877
  • Bauer K. D., Henle K. J. Arrhenius analysis of heat survival curves from normal and thermotolerant CHO cells. Radiation Research 1979; 78: 251–263
  • Ben-Hur E., Elkind M. M. Thermally enhanced radioresponse of cultured Chinese hamster cells: damage and repair of single stranded DNA and DNA complex. Radiation Research 1974; 59: 484–495
  • Conner W. G., Gerner E. W., Miller R. C., Boone M. L. M. Prospects for hyperthermia in human cancer therapy. Radiology 1977; 123: 497–503
  • Delpino A., Nista A. M., Mattei E., Fanuele M., Ferrini U. Thermosensitization by step-down heating in M-14 human melanoma cells. Journal of Experimental and Clinical Cancer Research 1990; 9: 71–78
  • Denekamp J., Hill S. Angionetic attack as a therapeutic strategy for cancer. Radiotherapy and Oncology 1991; 20(Suppl.)103–112
  • Denekamp J., Terry N. H. A., Sheldon P. W., Chu A. M. The effect of pento-barbital anaesthesia on the radiosensitivity of four mouse tumours. International Journal of Radiation Biology 1979; 35: 277–280
  • Dewey W. C. The search for critical targets by heat. Radiation Research 1989a; 120: 191–204
  • Dewey W. C. Mechanisms of thermal radiosensitization. Hyperthermia and Oncology, Vol. 2, Biology of Thermal Potentiation of Radiotherapy, M. Urano, E. Douple. VSP BV, Utrecht 1989b; 1–15
  • Dewey W. C., Hopwood L. E., Sapareto S. A., Gerweck L. E. Cellular responses to combinations of hyperthermia and radiation. Radiology 1977; 123: 463–474
  • Dikomey E. Effect of hyperthermia at 42 and 45°C on repair of radiation-induced DNA strand breaks in CHO cells. International Journal of Radiation Biology 1982; 41: 603–614
  • Dikomey E., Becker W., Wielchens K. Reduction of DNA-poplymerase β activity of CHO cells by single and combined heat treatments. International Journal of Radiation Biology 1987; 52: 775–785
  • Dikomey E., Eickhoff J., Jung H. Thermotolerance and thermosensitization in CHO and R1H cells: a comparative study. International Journal of Radiation Biology 1984; 46: 181–192
  • Dikomey E., Jung H. Correlation between polymerase β activity and thermal radiosensitization in Chinese hamster ovary cells. Recent Results in Cancer Research, W. Hinkelbein, G. Bruggmoser, R. Engelhardt, M. Wannenmacher. Springer-Verlag, Berlin, Heidelberg 1988; vol. 109: 35–41, Preclinical Hyperthermia
  • Dikomey E., Müller C., Jung H. Effect of various degrees of thermotolerance on thermosensitization at different temperatures studied in CHO cells. International Journal of Hyperthermia 1991; 7: 741–748
  • Field S. B. In vivo aspects of hyperthermic oncology. An Introduction to the Practical Aspects of Clinical Hyperthermia, S. B. Field, J. W. Hand. Taylor and Francis, London, New York, Philadelphia 1990; 55–68
  • Field S. B., Anderson R. L. Thermotolerance: a review of observations and possible mechanisms. National Cancer Institute Monograph 1982; 61: 193–201
  • Field S. B., Hand J. W. Introduction. An Introduction to the Practical Aspects of Clinical Hyperthermia, S. B. Field, J. W. Hand. Taylor and Francis, London, New York and Philadelphia 1990; 1–9
  • Field S. B., Morris C. C. The relationship between heating time and temperature: its relevance to clinical hyperthermia. Radiotherapy and Oncology 1983; 1: 179–186
  • Field S. B., Morris C. C. Application of the relationship between heating time and temperature for the use as a measure of thermal dose. Hyperthermic Oncology 1984), J. Overgaard. Taylor and Francis, London and Philadelphia 1984; Vol. 1: 183–186
  • Field S. B., Raaphorst G. P. Thermal dose. An Introduction to Practical Aspects of Clinical Hyperthermia, S. B. Field, J. W. Hand. Taylor and Francis, London, New York, Philadelphia 1990; 69–76
  • Folkman J. Tumor angiogenesis. Cancer: A Comprehensive Treatise, F. Becker. Plenum, New York 1975; 355–388
  • Gerner E. W. Thermotolerance. Hyperthermia in Cancer Therapy, F. K. Storm. G. K. Hall Medical Publishers, Boston, Massachusetts 1983; 141–162
  • Gerner E. W. Thermal dose and time-temperature factors for biological responses to heat shock. International Journal of Hyperthermia 1987; 3: 319–327
  • Gerweck L. E. Modification of cell lethality at elevated temperatures, the pH effect. Radiation Research 1977; 70: 224–235
  • Gerweck L. E., Urano M., Koutcher J., Fellenz M. P., Kahn J. Relationship between energy status, hypoxic cell fraction, and hyperthermic sensitivity in a murine fibrosarcoma. Radiation Research 1989; 117: 448–458
  • Gibbs F. A., Jr. Externally induced hyperthermia. Innovations in Radiation Oncology, H. R. Withers, L. J. Peters. Springer-Verlag, Berlin, Heidelberg, New York 1988; 291–301
  • Giovanella B. C., Lohman W. A., Heidelberger C. Effects of elevated temperatures and drugs on the viability of L1210 leukemia cells. Cancer Research 1980; 30: 1623–1631
  • Grau C., Overgaard J. Effect of cancer chemotherapy on the hypoxic fraction of a solid tumor measured using a local tumor control assay. Radiotherapy and Oncology 1988; 13: 301–309
  • Hahn G. M. Hyperthermia and Cancer. Plenum Press, New York and London 1982
  • Hahn G. M., Li G. C. Thermotolerance and heat shock proteins in mammalian cells. Radiation Research 1982; 92: 452–457
  • Hahn G. M., Shiu E. C. Protein synthesis, thermotolerance and step-down heating. International Journal of Radiation Oncology, Biology and Physics 1985; 11: 159–164
  • Henle K. J. Sensitization to hyperthermia below 43°C induced in Chinese hamster ovary cells by step-down heating. Journal of the National Cancer Institute 1980; 64: 1479–1483
  • Henle K. J. Arrhenius analysis of thermal responses. Hyperthermia in Cancer Therapy, F. K. Storm. G. K. Hall Medical Publishers, Boston and Massachusetts 1983; 47–53
  • Henle K. J. Thermotolerance in cultured mammalian cells. Thermotolerance, K. J. Henle. CRC Press, Boca Raton 1987; 13–71
  • Henle K. J., Dethlefsen L. A. Heat fractionation and thermotolerance: a review. Cancer Research 1978; 38: 1843–1851
  • Henle K. J., Dethlefsen L. A. Time-temperature relationships for heat-induced killing of mammalian cells. Annals of the New York Academy of Sciences 1980; 335: 234–253
  • Henle K. J., Dethlefsen L. A. Heat fractionation and step-down heating of murine mammary tumors in the foot. National Cancer Institute Monograph 1982; 61: 283–285
  • Henle K. J., Karamuz J. E., Leeper D. B. Induction of thermotolerance in Chinese hamster ovary cells by high (45°) or low (40°) hyperthermia. Cancer Research 1978; 38: 570–574
  • Henle K. J., Leeper D. B. Combinations of hyperthermia (40°, 45°C) with radiation. Radiology 1976; 121: 451–454
  • Henle K. J., Leeper D. B. The modification of radiation damage in CHO cells by hyperthermia at 40 and 45°C. Radiation Research 1977; 70: 415–424
  • Henle K. J., Leeper D. B. Interaction of sublethal and potentially lethal 45°-hyperthermia and radiation damage at 0, 20, 37 or 40°C. European Journal of Cancer 1979; 15: 1387–1394
  • Henle K. J., Nagle W. A., Moss A. J., Herman T. S. Cellular ATP content of heated Chinese hamster ovary cells. Radiation Research 1984; 97: 630–633
  • Henle K. J., Roti Roti J. L. Response of cultured mammalian cells to hyperthermia. Hyperthermia and Oncology, Vol. 1, Thermal Effects on Cells and Tissues, M. Urano, E. Douple. VSP BV, Utrecht 1988; 57–82
  • Henle K. J., Warters R. L. Heat protection by glycero in vitro. Cancer Research 1982; 42: 2171–2176
  • Herman T. S., Henle K. J., Nagle W. A., Moss A. J., Monson T. P. Effect of step-down heating on the cytotoxicity of adriamycin, bleomycin and cis-diamminedichloro-platinum. Cancer Research 1984; 44: 1823–1826
  • Hiraoka M., Miyakoshi J., Jo S., Takahashi M., Abe M. Effects of step-up and step-down heating on a transplantable murine tumor. Japanese Journal of Cancer Research (Gann) 1986; 77: 1102–1106
  • Hiraoka M., Miyakoshi J., Shiken J., Takahashi M., Abe M. Effects of step-up and step-down heating combined with radiation on murine tumor and normal tissues. Japanese Journal of Cancer Research (Gann) 1987; 78: 63–67
  • Howes A. E. An estimation of changes in the proportions and absolute numbers of hypoxic cells after irradiation of transplanted C3H mouse mammary tumours. British Journal of Radiology 1969; 42: 441–447
  • Hume S. P., Marigold J. C. The effect of step-down heating on mouse small intestinal mucosa. International Journal of Hyperthermia 1987; 3: 153–165
  • Hunt J. W. Principles of ultrasound used for generating localized hyperthermia. An Introduction to the Practical Aspects of Clinical Hyperthermia, S. B. Field, J. W. Hand. Taylor and Francis, London, New York and Philadelphia 1990; 371–422
  • Jones E. L., Douple E. B. Effect of step-down heating on brachytherapy in a murine tumor system. Radiation Research 1990; 124: 141–146
  • Jorritsma J. B. M., Burgman P., Kampinga H. H., Konings A. W. T. DNA polymerase activity in heat killing and hyperthermic radiosensitization of mammalian cells as observed after fractionated heat treatments. Radiation Research 1986; 105: 307–319
  • Joshi D. S., Jung H. Thermotolerance and sensitization induced in CHO cells by fractionated hyperthermic treatments. European Journal of Cancer 1979; 15: 345–350
  • Jung H. Interaction of thermotolerance and thermosensitization induced in CHO cells by combined hyperthermic treatments at 40 and 43°C. Radiation Research 1982; 91: 433–446
  • Jung H. A generalized concept for cell killing by heat. Radiation Research 1986; 106: 56–72
  • Jung H. Step-down heating of CHO cells at 37·5 to 39°C. International Journal of Hyperthermia 1989a; 5: 665–673
  • Jung H. Models and mechanisms of hyperthermia: Arrhenius analysis of thermal responses. Hyperthermic Oncology 1988, T. Sugahara, M. Saito. Taylor and Francis, London, New York, Philadelphia 1989b; Volume 2: 103–106
  • Jung H. Effect of chronically induced thermotolerance on thermosensitization in CHO cells. International Journal of Hyperthermia 1991a; 7: 621–628
  • Jung H. A generalized concept for cell killing by heat. Part 2. Effect of chronically induced thermotolerance. Radiation Research 1991b; 127: 235–242
  • Jung H., Kölling H. Induction of thermotolerance and sensitization in CHO cells by combining hyperthermic treatments at 40 and 43°C. European Journal of Cancer 1980; 16: 1523–1528
  • Kampinga H. H., Jorritsma J. B. M., Konings A. W. T. Heat-induced alterations in DNA polymerase activity of HeLa cells of isolated nuclei. Relation to cell survival. International Journal of Radiation Biology 1985; 47: 29–40
  • Kampinga H. H., Turkel-Uygur N., Roti Roti J. L. The relationship of increased nuclear protein content induced by hyperthermia to killing of HeLa S3 cells. Radiation Research 1989a; 117: 511–522
  • Kampinga H. H., Keij J. F., van der Kruk G., Konings A. W. T. Interaction of hyperthermia and radiation in tolerant and nontolerant HeLa S3 cells: role of DNA polymerase inactivation. International Journal of Radiation Biology 1989b; 55: 423–433
  • Kampinga H. H., Wright W. D., Konings A. W. T., Roti Roti J. L. The interaction of heat and radiation affecting the ability of nuclear DNA to undergo supercoiling changes. Radiation Research 1988; 116: 114–123
  • Landry J., Chrétien P. Relationship between hyperthermia-induced heat shock proteins and thermotolerance in Morris hepatoma cells. Canadian Journal of Biochemistry and Cell Biology 1983; 61: 428–437
  • Law M. P., Ahier R. G., Somaia S., Field S. B. The induction of thermotolerance in the ear of the mouse by fractionated hyperthermia. International Journal of Radiation Oncology, Biology and Physics 1984; 10: 865–873
  • Leeper D. B. Molecular and cellular mechanisms of hyperthermia alone or combined with other modalities. Hyperthermic Oncology 1984. Volume 2, J. Overgaard. Taylor and Francis, London and Philadelphia 1985; 9–40
  • Leeper D. B., Henle K. J., Striegel T. Effect of combined high and low hyperthermia (40°, 45°C) on macromolecular synthesis. Radiation Research 1980; 83: 392, Abstract
  • Li G. C., Cameron R. B., Sapareto S. A., Hahn G. M. Reinterpretation of Arrhenius analysis of cell inactivation by heat. National Cancer Institute Monograph 1982; 61: 111–113
  • Li G. C., Hahn G. M. A proposed operational model of thermotolerance based on effects of nutrients and the initial treatment temperature. Cancer Research 1980; 40: 4501–4508
  • Lin P., Wu A., Ho K. Stability of heating temperature on cytotoxicity. International Journal of Radiation Oncology, Biology and Physics 1987; 13: 1869–1873
  • Lindegaard J. C., Grau C., Overgaard J. Effect of step-down heating on the interaction between heat and radiation in a C3H mammary carcinom in vivo. International Journal of Radiation Biology 1991a; 60: 707–721
  • Lindegaard J. C., Nielsen O. S. Thermotolerance in the mouse foot estimated at various levels of normal tissue damage. International Journal of Radiation Oncology, Biology and Physics 1989; 16: 1543–1549
  • Lindegaard J. C., Nielsen O. S. Time-temperature relationships for L1A2 cells step-down heated from 38 to 45° in vitro. Radiation Research 1990; 121: 282–287
  • Lindegaard J. C., Nielsen O. S. Sensitization to hyperthermia induced in a normal tissue by step-down heating. International Journal of Radiation Oncology, Biology and Physics 1991; 20: 1023–1209
  • Lindegaard J. C., Nielsen O. S., Overgaard J. A comparison between the effect of step-down heating in a tumour and a normal tissu in vivo. International Journal of Hyperthermia 1991b; 7: 519–526
  • Lindegaard J. C., Overgaard J. Factors of importance for the development of the step-down heating effect in a C3H mammary carcinom in vivo. International Journal of Hyperthermia 1987; 3: 79–91
  • Lindegaard J. C., Overgaard J. Effect of step-down heating on hyperthermic radio-sensitization in an experimental tumor and a normal tissu in vivo. Radiotherapy and Oncology 1988; 11: 143–151
  • Lindegaard J. C., Overgaard J. Step-down heating in a C3H mammary carcinoma in vivo. Effects of varying the time and temperature of the sensitizing treatment. International Journal of Hyperthermia 1990; 6: 607–618
  • Marigold J. C., Hume S. P. Thermosensitization by step-down heating in mouse testis. International Journal of Hyperthermia 1989; 5: 371–376
  • Mills M. D., Meyn R. E. Hyperthermic potentiation of unrejoined DNA strand breaks following irradiation. Radiation Research 1983; 95: 327–338
  • Miyakoshi J. Responses to hyperthermia (42°, 44°) and/or radiation in four mammalian cell line in vivo. Japanese Journal of Radiation Research 1981; 22: 352–366
  • Miyakoshi J., Ikebuchi M., Furukawa M., Yamagata K., Sugahara T., Kano E. Combined effects of X-irradiation and hyperthermia (42 and 44°C) on Chinese hamster V-79 cell in vitro. Radiation Research 1979; 79: 77–88
  • Miyakoshi J., Hiraoka M., Takahashi M., Kano E., Abe M., Heki S. Skin responses to step-up and step-down heating in C3H mice. International Journal of Radiation Oncology, Biology and Physics 1983; 9: 1527–1532
  • Mooibroek J., Dikomey E., Zyywietz F., Jung H. Thermotolerance kinetics and growth rate changes in the R1H tumour heated at 43°C. International Journal of Hyperthermia 1988; 4: 677–686
  • Murray J. C., Smith K. A., Lauk S. Vascular markers for murine tumours. Radiotherapy and Oncology 1989; 16: 221–234
  • Nielsen O. S. Fractionated hyperthermia and thermotolerance. Danish Medical Bulletin 1984; 31: 376–390
  • Nielsen O. S. Evidence for an upper temperature limit for thermotolerance development in L1A2 cell in vitro. International Journal of Hyperthermia 1986; 2: 299–309
  • Nielsen O. S., Henle K. J., Overgaard J. Arrhenius analysis of survival curves from thermotolerant and step-down heated L1A2 cell in vitro. Radiation Research 1982; 91: 468–482
  • Nielsen O. S., Overgaard J. Influence of time and temperature on the kinetics of thermotolerance in L1A2 cell in vitro. Cancer Research 1982; 42: 4190–4196
  • Overgaard J. Simultaneous and sequential hyperthermia and radiation treatment of an experimental tumor and its surrounding normal tissu in vivo. International Journal of Radiation Oncology, Biology and Physics 1980; 6: 1507–1517
  • Overgaard J. Effect of hyperthermia on the hypoxic fraction in an experimental mammary carcinom in vivo. British Journal of Radiology 1981; 54: 245–249
  • Overgaard J. Formula to estimate the thermal enhancement ratio of a single simultaneous hyperthermia and radiation treatment. Acta Radiologica Oncology 1984; 23: 135–139
  • Overgaard J. Some problems related to the clinical use of thermal isoeffect doses. International Journal of Hyperthermia 1987; 3: 329–336
  • Overgaard J. The current and potential role of hyperthermia in radiotherapy. International Journal of Radiation Oncology, Biology and Physics 1989; 16: 535–549
  • Overgaard J., Grau C., Lindegaard J. C., Horsman M. R. The otential of using hyperthermia to eliminate radioresistant hypoxic cells. Radiotherapy and Oncology 1991; 20(Suppl.)113–116
  • Overgaard J., Nielsen O. S. The role of tissue environmental factors on the kinetics and morphology of tumor cells exposed to hyperthermia. Annals of the New York Academy of Sciences 1980; 335: 254–280
  • Overgaard J., Overgaard M. Hyperthermia as an adjuvant to radiotherapy in the treatment of malignant melanoma. International Journal of Hyperthermia 1987; 3: 483–501
  • Padovani L., Cividalli A., Della Torre A., Galloni L., Mauro F. The effect of step-down heating on murine tumour tissue after fractionated X-ray treatments. International Journal of Hyperthermia 1987; 3: 585–586 (Abstract)
  • Perez C. A., Sapareto S. A. Thermal dose expression in clinical hyperthermia and correlation with tumor response/control. Cancer Research 1984; 44: 4818–4825
  • Raaphorst G. P. Fundamental aspects of hyperthermic biology. An Introduction to the Practical Aspects of Clinical Hyperthermia, S. B. Field, J. W. Hand. Taylor and Francis, London 1990; 10–54
  • Reinhold H. S., Endrich B. Invited review, tumour microcirculation as a target for hyperthermia. International Journal of Hyperthermia 1986; 2: 111–137
  • Reinhold H. S., van den Berg-Blok A. The influence of a heat pulse on the thermally induced damage to tumour microcirculation. European Journal of Cancer and Clinical Oncology 1983; 19: 221–225
  • Rhee J. G., Song C. W., Levitt S. H. Thermosensitizing effect of heat-induced vascular damage. Hyperthermic Oncology 1984. Vol. 1, J. Overgaard. Taylor and Francis, London and Philadelphia 1984; 153–156
  • Rockwell S., Loomis R. Effects of sodium pentobarbital on the radiation response of EMT6 cells in vitro and EMT8 tumor in vivo. Radiation Research 1980; 81: 292–302
  • Rofstad E. K., Brustad T. Differences in thermosensization among cloned cell lines isolated from a single human melanoma xenograft. Radiation Research 1986; 107: 147–155
  • Rosenberg B., Kenemy G., Switzer T., Hamilton T. C. Quantitative evidence for protein denaturation as the cause of thermal death. Nature (London) 1971; 232: 471–473
  • Roti Roti J. L., Laszlo A. The effects of hyperthermia on cellular macromolecules. Hyperthermia and Oncology, Vol. 1, Thermal Effects on Cells and Tissues, M. Urano, E. Douple. VSP BV, Utrecht 1988; 13–56
  • Roti J. L., Winward R. T. Factors affecting the heat-induced increase in protein content of chromatin. Radiation Research 1980; 81: 138–144
  • Sapareto S. A., Dewey W. C. Thermal dose determination in cancer therapy. International Journal of Radiation Oncology, Biology and Physics 1984; 10: 787–800
  • Song C. W. Effect of local hyperthermia on blood flow and microenvironment: a review. Cancer Reserch 1984; 44: 4721s–4730s
  • Spiro I. J., Sapareto S. A., Raaphorst G. P., Dewey W. C. The effect of chronic and acute heat conditioning on the development of thermal tolerance. International Journal of Radiation Oncology, Biology and Physics 1982; 8: 53–58
  • Stephens T. C., Steel G. G. The evaluation of combinations of cytotoxic drugs and radiation: isobolograms and therapeutic synergism. Rodent Tumor Models in Experimental Cancer Therapy, R. F. Kallman. Pergamon Press, Oxford, New York 1987; 248–252
  • Urano M., Cunningham M., Rice L. C. Effect of general anaesthetics on the thermal response of normal and malignant murine tissues. International Journal of Radiation Biology 1980; 38: 667–671
  • Urano M., Kahn J. The effect of step-down heating on murine normal and tumor tissues. Radiation Research 1983; 94: 350–358
  • Vaupel P., Kallinowski F. Physiological effects of hyperthermia. Hyperthermia and the Therapy of Malignant Tumours, C. Streffer. Springer-Verlag, Berlin 1987; 71–109
  • Vaupel P., Kallinowski F., Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors. Cancer Research 1989; 49: 6449–6465
  • von der Maase H. Effects of cancer chemotherapeutic drugs on the radiation induced skin reactions in mouse feet. British Journal of Radiology 1984; 57: 697–707
  • von der Maase H. Experimental studies on interactions of radiation and cancer chemotherapeutic drugs in normal tissues and a solid tumour. Radiotherapy and Oncology 1986; 7: 47–68
  • Warters R. L., Lyons B. W., Axtell-Bartlett A. Inhibition of repair of radiation-induced DNA damage by thermal shock in Chinese hamster ovary cells. International Journal of Radiation Biology 1987; 51: 505–517
  • Westra A., Dewey W. C. Variation in sensitivity to heat shock during the cell-cycle of Chinese hamster cell in vitro. International Journal of Radiation Biology 1971; 19: 467–477
  • Wondergem J., Haveman J., van der Schueren E. Influence of misonidazole, anaesthesia, clamping of the leg and stress of the animal during treatment on the radiation-induced skin reaction of mouse feet. International Journal of Radiation Biology 1982; 41: 689–695

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.