9
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Effect of dietary modulation of membrane lipid composition on the thermostability of HTC cells and of a membrane enzyme

, , &
Pages 503-515 | Received 05 Jun 1992, Accepted 15 Sep 1992, Published online: 09 Jul 2009

References

  • Alaniz M. J. T. de, Gomez Dumm I. N. T. de, Brenner R. R. Effect of fatty acids of the ω6 series on the biosynthesis of arachidonic acid in HTC cells. Molecular and Cellular Biochemistry 1984; 64: 31–37
  • Anderson R. L., Lunec J., Cresswell S. R. Cholesterol content and heat sensitivity of nine mammalian cell lines. International Journal of Hyperthemia 1985; 1: 337–347
  • Anderson R. L., Minton K. W., Li G. C., Hahn G. M. Temperature-induced homeoviscous adaptation in Chinese hamster ovary cells. Biochimica et Biophysica Acta 1981; 641: 334–348
  • Barker C. J., Bowler K. Lipid composition of the membranes from cells of two rat tumors and its relationship to tumor thermosensitivity. Radiation Research 1991; 125: 48–55
  • Bates D. A., Legrimellec C., Bates J. H. T., Loufti A., Mackillop W. J. Effect of thermal adaptation at 40°C on membrane viscosity and the sodium-potassium pump in Chinese hamster ovary cells. Cancer Research 1985; 45: 4895–4899
  • Beaufay H., Amar-Costesec A., Feytmans E., Thins-Sempoux D., Wibo M., Robbi M., Berthet J. Analytical study of microsomes and isolated subcellular membranes from rat liver, I. Biochemical methods. Journal of Cell Biology 1974; 61: 188–200
  • Bligh E. G., Dyer W. J. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 1959; 37: 911–917
  • Bowler K. Cellular heat injury: are membranes involved. Temperature and Animal Cells. Company of Biologists, Cambridge 1987; 157–185, SEB Symposium XLI
  • Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Analytical Biochemistry 1976; 72: 248–254
  • Burns C. P., Spector A. A. Membrane fatty acid modification in tumor cells: a potential therapeutic adjunct. Lipids 1987; 22: 178–184
  • Burns C. P., North J. A., Mossman C. J., Ingraham L. M. Modification of the fatty acid composition of L1210 leukemia subcellular organelles. Lipids 1988; 23: 615–618
  • Burns C. P., Rosenberger J. A., Luttenegger D. G. Selectivity in modification of the fatty acid composition of normal mouse tissues and membranes. in vivo. Annals of Nutrition and Metabolism 1983; 27: 268–277
  • Cheng K. H., Jui S. W., Lepock J. R. Protection of the membrane calcium adenosine triphosphatase by cholesterol from thermal inactivation. Cancer Research 1987; 47: 1255–1262
  • Cossins A. R., Prosser C. L. Evolutionary adaptation of membranes to temperature. Proceedings of the National Academy of Sciences, USA 1978; 75: 2040–2043
  • Cossins A. R., Bowler K., Prosser C. L. Homeoviscous adaptation and its effect upon membrane-bound proteins. Journal of Thermal Biology 1981; 6: 183–187
  • Cossins A. R., Behan M., Jones G., Bowler K. Lipid-protein interactions in the adaptive regulation of membrane function. Bochemical Society Transactions 1987; 15: 77–81
  • Cress A. E., Gerner E. W. Cholesterol levels inversely reflect the thermal sensitivity of mammalian cells in culture. Nature, London 1980; 283: 677–679
  • Culver P. S., Gerner E. W. Temperature acclimation and specific cellular components in the regulation of thermal sensitivity of mammalian cells. Cancer Therapy by Hyperthermia, Drugs and Radiation, L. Dethlefsen. US Department of Health and Human Services, Bethesda 1982; 99–101
  • Draye J. P., Courtoy P. J., Quintart J., Baudhuin P. Relations between plasma membrane and lysosomal membrane. 2. Quantitative evaluation of plasma membrane marker enzymes in the lysomes. European Journal of Biochemistry 1987; 170: 405–411
  • Gonzalez-Mendez R., Minton K. W., Hahn G. M. Lack of correlation between membrane lipid composition and thermotolerance in Chinese hamster ovary cells. Biochimica et Biophysica Acta 1982; 692: 168–170
  • Guffy M. M., Rosenberger J. A., Simon I., Burns C. P. Effect of cellular fatty acid alteration in hyperthermic sensitivity in cultured L1210 murine leukemia cells. Cancer Research 1982; 42: 3625–3630
  • Hahn G. M. Hyperthermia and Cancer. Plenum Press, New York 1982
  • Hahn G. M., Li G. C., Shiu E. Interaction of amphotericin B and 43°C hyperthermia. Cancer Research 1977; 37: 761–764
  • Hidvegi E. J., Yatvin M. B., Dennis W. H., Hidvegi E. Effect of altered membrane lipid composition and procaine on hyperthermic killing of ascites tumor cells. Oncology 1980; 37: 360–363
  • Johnson P. V., Roots B. I. Brain lipid fatty acids and temperature acclimation. Comparative Biochemistry and Physiology 1964; 11: 303–309
  • Johnson S. M. A new specific cholesterol assay gives reduced cholesterol/phospholipid molar ratios in cell membranes. Analytical Biochemistry 1979; 95: 344–350
  • King M. E., Spector A. A. Effects of specific fatty acyl enrichments on membrane physical properties detected with a spin label probe. Journal of Biological Chemistry 1978; 253: 6493–6501
  • Konings A. W. T. Development of thermotolerance in mouse fibroblast LM cells with modified membranes and after procaine treatment. Cancer Research 1985; 45: 2016–2019
  • Konings A. W. T. Membranes as targets for hyperthermic cell killing. Recent Results in Cancer Research 1988; 109: 9–21
  • Konings A. W. T., Ruifrok A. C. C. Role of membrane lipids and membrane fluidity in thennosensitivity and thermotolerance of mammalian cells. Radiation Research 1985; 102: 86–98
  • Lepock J. R. Involvement of membranes in cellular responses to hyperthermia. Radiation Research 1982; 92: 433–438
  • Lepock J. R., Massicotte-Nolan P., Rule G. S., Kruuv J. Lack of a correlation between hyperthermic cell killing, thermotolerance, and membrane lipid fluidity. Radiation Research 1981; 87: 300–313
  • Lepock J. R., Cheng K. H., Al-Qysi H., Kruuv J. Thermotropic lipid and protein transitions in Chinese hamster lung cell membranes: relationship to hyperthermic cell killing. Canadian Journal of Biochemistry and Cell Biology 1983; 61: 421–427
  • Lepock J. R., Frey H. E., Rodahl A. M., Kruuv J. Thermal analysis of CHL V79 cells using differential scanning calorimetry: implications for hyperthermic cell killing and the heat shock response. Journal of Cellular Physiology 1988; 137: 14–24
  • Lepock J. R., Frey H. E., Bayne H., Markus J. Relationship of hyperthermia-induced hemolysis of human erythrocytes to thermal denaturation of membrane proteins. Biochimica et Biophysica Acta 1989; 980: 191–201
  • Manning R., Chambers J., Ladha S., Kingston C. A., Bowler K. Rapid purification of plasma membranes in high yield from HTC cells. Biochemical Society Transactions 1989; 17: 670–671
  • Massicotte-Nolan P., Glofcheski D. J., Kruuv J., Lepock J. R. Relationship between hyperthermic cell killing and protein denaturation by alcohols. Biochimica et Biophysica Acta 1981; 87: 284–299
  • McElhaney R. N. The effect of alterations in the physical state of membrane lipids on the ability of Acholeplasma laidlawii B to grow at various temperatures. Journal of Molecular Biology 1974; 84: 145–147
  • Morrison W. R., Smith L. M. Preparation of fatty acid methyl esters and dimethyl acetals from lipids with boron fluoride-methanol. Journal of Lipid Research 1964; 5: 600–608
  • Mulcahy R. T., Gould M. N., Hidvegi E., Elson C. E., Yatvin M. B. Hyperthermia and surface morphology of P388 ascites tumor cells: effect of membrane modifications. International Journal of Radiation Biology 1981; 39: 95–106
  • Overath P., Schairer H. U., Stoffel W. Correlation of in vivo and in vitro phase transition of membrane lipids in. Escherichia coli. Proceedings of the National Academy of Sciences, USA 1970; 67: 606–612
  • Raaphorst G. P., Vadasz J. A., Assam E. I., Sargent M. D., Borsa J., Einspenner M. Comparison of heat and/or radiation sensitivity and membrane composition of seven X-ray transformed C3H 10T1/2 cell lines and normal C3H 10T cells. Cancer Research 1985; 45: 5452–5456
  • Raheja R. K., Kaur C., Singh A., Bhatia I. S. New colorimetric method for the quantitative estimation of phospholipids without acid digestion. Journal of Lipid Research 1973; 14: 695–697
  • Roti Roti J. L. Heat-induced cell death and radiosensitisation: molecular mechanisms. National Cancer Institute Monographs 1982; 61: 3–10
  • Sinensky M. Homeoviscous adaptation —a homeostatic process that regulates the viscosity of membrane lipids in. Escherichia coli. Proceedings of the National Academy of Sciences, USA 1974; 71: 522–525
  • Spector A. A., Burns C. P. Biological and therapeutic potential of membrane lipid modification in tumors. Cancer Research 1987; 47: 4529–4537
  • Stubbs C. D., Smith A. D. The modification of mammalian membrane poly-unsaturated fatty acid composition in relation to membrane fluidity and function. Biochimica et Biophysica Acta 1984; 779: 89–137
  • Talbot S., Manning R. Temporal changes in the fatty acid composition of liver and plasma lipids in the male chicken after oestrogen administration. Biochemical Socient Transactions 1987; 15: 423–424
  • Wolters H., Konings A. W. T. Radiosensitivity of normal and polyunsaturated fatty acid supplemented fibroblasts after depletion of glutathione. International Journal of Radiation Biology 1984; 46: 161–168
  • Yatvin M. B. Evidence that survival of gamma-irradiated Escherichia coli is influenced by membrane fluidity. International Journal of Radiation Biology 1976; 32: 571–575
  • Yatvin M. B. The influence of membrane lipid composition and procaine in hyperthermic death of cells. International Journal of Radiation Biology 1977; 32: 513–521
  • Yatvin M. B., Vorpahl J. W., Gould M. N., Lyte M. The effects of membrane modification on the survival of P388 and V79 cells. European Journal of Cancer and Clinical Oncology 1983; 19: 1247–1253
  • Yatvin M. B., Dennis W. H., Elegbede J. A., Elson C. E. Sensitivity of Tumour Cells to Heat and Ways of Modifying the Response. Company of Biologists, Cambridge 1987; 235–267, SEB Symposium XLI
  • York D. A., Hyslop P. A., French R. Fluorescence polarisation and composition of membranes in genetic obesity. Biochimica et Biophysica Acta 1982; 106: 513–521

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.