4
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Correlation between the n-alkanols-induced sensitization of erythrocytes to hyperthermia and the fluidization of their membrane

&
Pages 673-683 | Received 27 Jun 1994, Accepted 13 Dec 1994, Published online: 09 Jul 2009

References

  • Andrich M. P., Vanderkooi J. M. Temperature dependence of 1, 6-diphenyl-1, 3, 5-hexatriene fluorescence in phospholipid artificial membranes. Biochemistry 1976; 15: 1257–1261
  • Bodemann H., Passow H. Factors controlling the resealing of the membranes of human erythrocyte ghosts after hypotonic haemolysis. Journal of Membrane Biology 1972; 8: 1–26
  • Borochov H., Zahler P., Welbrandt W., Shinitzky M. The effect of phosphatidyl-choline to sphingomyelin mole ratio on the dynamic properties of sheep erythrocyte membrane. Biochimica et Biophysica Acta 1977; 470: 382–388
  • Bowler K. Cellular heat injury: are membranes involved?. Animal Cells and Temperature, K. Bowler, B. J. Fuller. Company of Biologists, Cambridge 1987; 157–185, SEB Symposium XLI
  • Brandts J. F., Erickson L., Lysko K., Schwartz T., Taverna R. Calorimetric studies of the structural transitions of the human erythrocyte membrane. The involvement of spectrin in the A transition. Biochemistry 1977; 16: 3450–3454
  • Brandts D. F., Taverna R. D., Sadasivan E., Lysko K. A. Calorimetric studies of the structural transitions of the human erythrocyte membranes. Studies of the B and C transitions. Biochimica et Biophysica Acta 1978; 512: 566–578
  • Chernitsky E. A., Jamaikina I. Thermohemolysis of erythrocytes. Biofisika 1988; 33: 319–322
  • Davio S. R., Low P. S. Characterization of the calorimetric C transition of the human erythrocyte membrane. Biochemistry 1982; 21: 3575–3592
  • Dodge J. T., Mitchell C., Hanahan D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of erythrocytes. Archives of Biochemistry and Biophysics 1963; 100: 119–130
  • Gershfeld N. L., Murayama M. Thermal instability of red blood cells membrane bilayer; temperature dependence of haemolysis. Journal of Membrane Biology 1988; 101: 67–72
  • Hahn G. M., Shiu E. C., Goldstein L., Li G. C. Mechanistic implications of the induction of thermotolerance in Chinese hamster cells by organic solvents. Cancer Research 1985; 45: 4138–4143
  • Hazel J. R. The effect of temperature acclimation upon succinic dehydrogenase activity from the epaxial muscle of common goldfish. Comparative Biochemistry and Physiology 1972; 43: 863–882
  • Herskovits T. T., Gadegbeku B., Jailett H. On the structural stability and solvent denaturation of proteins. Journal of Biological Chemistry 1970; 245: 2588–2598
  • Heyn M. P. Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments. FEBS Letters 1979; 108: 359–364
  • Hiraoka T., Glick D. Studies in biochemistry, LXXI. Measurements of protein in millimicrogram amounts by quenching of dye fluorescence. Analytical Biochemistry 1963; 5: 497–504
  • Hunt W. A. Alcohol and Biological Membranes, H. T. Blane, D. W. Goodwin. Guilford, New York 1985, The Guildford Alcohol Studies Series. I.
  • Ivanov I. T. Thermohaemolysis of human erythrocytes in sucrose containing isotonic media. Journal of Thermal Biology 1992; 17: 375–379
  • Ivanov I. T. Thermohaemolysis of mammalian erythrocytes. Journal of Thermal Biology 1993; 18: 177–183
  • Ivanov I. T., Benov L. C. Thermohaemolysis of human erythrocytes in isotonic NaCl/surcrose media during transient heating. Journal of Thermal Biology 1992; 17: 381–389
  • Ivanov I. T., Boytcheva S. I. Relationship between the hyperthermia induced killing of streptococcus faecalis bacteria cells and their permeability barrier disturbance event at high temperature. Journal of Thermal Biology 1994; 19: 199–206
  • Kawato S., Kinosita K., Jr., Ikegami A. Effect of cholesterol on the molecular motion in the hydrocarbon region of lecithin bilayers studies by nanosecond fluorescence technique. Journal of the American Chemical Society 1978; 6: 5026–5031
  • Konings A. W. T., Ruifrok A. C. C. Role of membrane lipids and membrane fluidity in thermosensitivity in mammalian cells. Radiation Research 1985; 102: 86–98
  • Lepock J., Frey H., Bayne H., Markus J. Relationship of hyperthermia-induced haemolysis of human erythrocytes to the thermal denaturation of membrane proteins. Biochimica et Biophysica Acta 1989; 980: 191–201
  • Seeman Ph. The membrane action of anesthetics and tranquilizers. Pharmacology Review 1972; 24: 583–655
  • Scopes R. Protein Purification. Principles and Practices. Springer, Berlin 1982
  • Shintizky M., Barenholz Y. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochimica et Biophysica Acta 1978; 515: 367–395
  • Shinitzky M., Dianoux A.-C., Gitler C., Weber G. Microviscosity and order in the hydrocarbon region of micells and membranes determined with fluorescence probes. I. Sinthetic micells. Biochemistry 1971; 10: 2106–2113
  • Slater S. J., Ho C., Taddeo F., Kelly M., Stubbs C. Contribution of hydrogen bonding to lipid-lipid interactions in membranes and the role of lipid order: effects of cholesterol, increased phospholipid unsaturation and ethanol. Biochemistry 1993; 32: 3714–3721
  • Zavoico G. B., Kuchai H. Effects of n-alcanols on the membrane fluidity of chick embryo heart microsomes. Biochimica et Biophysica Acta 1980; 600: 263–269

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.