27
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Miniature dipole E-field probes for characterizing both phase and amplitude of microwave radiators for hyperthermia

, &
Pages 769-783 | Received 20 Jun 1994, Accepted 03 Feb 1995, Published online: 09 Jul 2009

References

  • Andersen J. B., Baun A., Harmark K., Heinzl L., Raskmark P., Overgaard J. A hyperthermia system using a new type of inductive applicator. IEEE Transactions on Biomedical Engineering 1984; BME-31: 21–27
  • Athey T. W., Stuchly M. A., Stuchly S. S. Measurement of radio frequency permittivity of biological tis with an open ended co-axial line: Part 1. IEEE Transactions on Microwave Theory Techniques 1982; MTT-30: 82–86
  • Bahl I. J., Bhartia P. Microstrip Antennas. Artech House, Dedham, MA 1982, Appendix B
  • Barry W. A broad-band, automated, stripline technique for the simultaneous measurement of complex permittivity and permeability. IEEE Transactions on Microwave Theory Techniques 1986; MTT-34: 80–84
  • Bassen H., Swicord M., Abita J. A miniature broad-band electric field probe, in Biological effects of nonionizing radiation. Annals of the New York Academy of Sciences 1975; 247: 481–493, edited by P Taylor
  • Bassen H., Herman W., Hoss R. EM probe with fiber optic telemetry. Microwave Journal 1977; 20: 35–39
  • Bassen H. I., Cheung A. Comment on experimental and theoretical studies on electromagnetic fields induced inside finite biological bodies. IEEE Transactions on Microwave Theory Techniques 1977; MTT-25: 623–624
  • Bassen H. I., Smith G. S. Electric probes-a review. IEEE Transactions on Antennas and Propagation 1983; Ap-31: 710–718
  • Belhadi-Tahar N. E., Fourrier-Lamer A., de Chanterac Helie. Broad-band simultaneous measurement of complex permittivity and permeability using a coaxial discontinuity. IEEE Transactions on Microwave Theory and Techniques 1990; MTT-38: 1–7
  • Beyne L., Zutter D. Power deposition of a microstrip applicator radiating into a layered biological structure. IEEE Transactions on Microwave Theory Techniques 1988; MTT-36: 126–131
  • Bianco B., Drago G. P., Marchesi M., Martini C., Mela G. S., Ridella S. Measurements of complex dielectric constant of human sera and erythrocytes. IEEE Transactions on Instrumentation and Measurement 1979; IM-28: 290–295
  • Bini M. G., Ignesti A., Millanta Olmi R., Rubino N., Vanni R. The polyacrylamide as a phantom material for electromagnetic hyperthermia studies. IEEE Transactions on Biomedical Engineering 1984; BME-31: 317–322
  • Burdette E. C., Cain F. L., Seals J. In vivo probe measurement technique for determining dielectric properties at VHF through microwave frequencies. IEEE Transactions on Microwave Theory Techniques 1980; MTT-28: 414–427
  • Calderwood J. H., Scaife B. K. P. On the estimation of the relative permittivity of a mixture. IEE Dielectrics Materials Measurements, 3rd Intl. Conf.. 1979; 177
  • Cetas T. C. Practical thermometry with a thermographic camera: Calibration, transmittance and emittance measurements. Reviews of Scientific Instruments 1978; 49: 245–254
  • Cetas T. C. The philosophy and use of ti equivalent electromagnetic phantoms. Physical Aspects of Hyperthermia, G. H. Nussbaum. American Association of Physicists in Medicine, American Institute of Physics, New York 1982; 441–461
  • Cetas T. C., Richards W. F., Gross E. J. Physics today, clinic tomorrow; A plan for new system development. International Journal of Hyperthermia 1994; 10(3)411–417
  • Cheung A. Y., Koopman D. W. Experimental development of simulated biomaterials for dosimetry study of hazardous microwave radiation. IEEE Transactions on Microwave Theory Techniques 1976; MTT-24: 669–670
  • Chou C. K., Chen G. W., Guy A. W., Luk K. H. Formulas for preparing phantom muscle ti at various radiofrequencies. Bioelectromagnetics 1984; 5: 435–441
  • Deschamps G. A. Impedance of an antenna in a conducting medium. IRE Transactions on Antennas and Propagation 1962; AP-10: 648–650
  • Dewhirst W., Phillips T. L., Samulski T. V., et al. RTOG quality assurance guidelines for clinical trials using hyperthermia. International Journal of Radiation Oncology, Biology and Physics 1990; 18: 1249–1259
  • Gajda G., Stuchly M. A., Stuchly S. S. Mapping of the near field pattern in simulated biological tis. Electronics Letters 1979; 15: 120–121
  • Gee W., Lee S. W., Bong N. K., Cain C. A., Mitra R., Magin R. L. Focussed array hyperthermia applicator: theory and experiment. IEEE Transactions on Biomedical Engineering 1984; BME-31: 38–46
  • Gopal M. K., Hand J. W., Lumori M. L. D., Alkhairi S., Paulsen K. D., Cetas T. C. Current sheet applicator arrays for superficial hyperthermia of chestwall lesions. International Journal of Hyperthermia 1992; 8: 227–240
  • Gopal M. K., Cetas T. C. Current sheet applicators for clinical microwave hyperthermia. IEEE Transactions on Microwave Theory Techniques 1993; 41: 431–437
  • Guy A. W. Analysis of electromagnetic fields induced in biological tis by thermographic studies on equivalent phantom models. IEEE Transactions on Microwave Theory Techniques 1971; MTT-19: 189–217
  • Hand J. W., Paulsen K. D., Lumori M. L. D., Gopal M. K., Cetas T. C., Alkhairi S. Microwave array for superficial hyperthermia. Hyperthermic Oncology, T. Sugahara, M. Saito. Taylor & Francis, London 1989; 827–828
  • Hand J. W., Cheetham J. L., Hind A. J. Absorbed power distributions from coherent microwave arrays for localized hyperthermia. IEEE Transactions on Microwave Theory Techniques 1986; MTT-34: 484–489
  • Hand J. W., Prior M. V., Lumori M. L. D., Force G. R. Current sheet applicators for superficial hyperthermia. Hyperthermic Oncology 1992; 1: 35, edited by E.W. Gemer
  • Hartsgrove G., Kranszewski A., Surowiec A. Simulated biological materials for electromagnetic radiation absorption studies. Bioelectromagnetics 1987; 8: 29–36
  • Isklander M. F., Khoshdel-Milani O. Numerical calculations of the temperature distribution in realistic cross sections of the human body. International Journal of Radiation Oncology, Biology and Physics 1984; 10: 1907–1912
  • Johnson R. H., Andrasic G., Smith L., James J. R. Field penetration of arrays of compact applicators in localized hyperthermia. International Journal of Hyperthermia 1985; 1: 321–336
  • Johnson R. H., James J. R., Hand J. W., Hopewell J. W., Dunlop P. R. C., Dickinson R. J. New low-profile applicators for local heating of tis. IEEE Transactions on Biomedical Engineering 1984; BME-31: 28–37
  • Johnson R. J., Preece A. W., Hand J. W., James J. R. A new type of lightweight low frequency electromagnetic hyperthermia applicator. IEEE Transactions on Microwave Theory Techniques 1987; MTT-35: 1317–1321
  • Johnson R. H., Robinson M. P., Preece A. W., Green J. L., Pothecary N. M., Railton C. J. Effect of frequency and conductivity on field penetration of electromagnetic hyperthermia applicators. Physics in Medicine and Biology 1993; 38: 1023–1034
  • Kraus J. D. Antennas. McGraw-Hill Book Company, New York 1950; 230–250
  • Lee E. R., Wilsey T. R., Tarczy-Hornoch P., Kapp D. S., Fessenden P., Lohrbach A., Prionas S. D. Body conformable 915 MHz microstrip array for large surface area hyperthermia. IEEE Transactions on Biomedical Engineering 1992; 39: 470–483
  • Leigh B. R., Stea B., Cassady J. R., Kittelson J., Cetas T. C. Clinical hyperthermia with the current sheet applicator. International Journal of Radiation Oncology, Biology and Physics 1994; 30(4)945–951
  • Lovisolo G. A., Adami M., Arcangeli G., Borrani A., Calamal G., Cividalli A., Mauro F. A multifrequency water-filled waveguide applicator: thermal dosimetry in vivo. IEEE Transactions on Microwave Theory Techniques 1984; MTT-32: 893–896
  • Lumori M. L. D., Andersen J. B., Gopal M. K., Cetas T. C. Gaussian beam representation of aperture fields in layered, lossy media: simulation and experiment. IEEE Transactions on Microwave Theory Techniques 1990a; MTT-38: 1623–1630
  • Lumori M. L. D., Hand J. W., Gopal M. K., Cetas T. C. Use of gaussian beam model in predicting SAR distributions for current sheet applicators. Physics in Medicine and Biology 1990b; 35(3)387–397
  • Lynch D. R., Paulsen K. D., Strohbehn J. W. Hybrid element method for unbounded electromagnetic problems in hyperthermia. International Journal of Numerical Methods in Engineering 1986; 23: 1915–1937
  • Magin R. L., Peterson A. F. Noninvasive microwave phased arrays for local hyperthermia: a review. International Journal of Hyperthermia 1989; 5: 429–450
  • Misra D., Chabbra M., Epstein B. R., Mirotznik M., Foster K. R. Noninvasive electrical characterization of materials at microwave frequencies using an open-ended coaxial line: test of an improved calibration technique. IEEE Transactions on Microwave Theory and Techniques 1990; MTT-38: 8–14
  • Montecchia F. Microstrip-antenna design for hyperthemia treatment of superficial tumors. IEEE Transactions Biomedical Engineering 1992; BME-39: 580–588
  • Morita N., Andersen J. B. Near field absorption in a circular cylinder from electric and magnetic line sources. Bioelectromagnetics 1982; 3: 253–274
  • Nikawa Y., Kobayashi D., Mori S., Okada F. New applicators for microwave hyperthermia. IEEE MIT-S International Microwave Symposium Digest 1991; 2: 809–812
  • Nilsson P., Larsson T., Persson B. Absorbed power distributions from two tilted waveguides. International Journal of Hyperthermia 1985; 1: 29–43
  • Oleson J. R., Samulski T. V., Leopold K. A., Clegg S. T., Dewhirst M. W., Dodge R. K., George S. L. Sensitivity of hyperthermia trial outcomes to temperature and time: implications for thermal goals of treatment. International Journal of Radiation Oncology, Biology and Physics 1993; 25: 289–297
  • Perez C. A., Gillespie B., Pajak T., Hornback N. B., Emami B., Rubin P. Quality assurance problems in clinical hyperthermia and their impact on therapeutic outcome: A Report by the Radiation Therapy Oncology Group. International Journal of Radiation Oncology, Biology and Physics 1989; 16: 551–558
  • Shaw J. A., Durney C. H., Christensen D. A. Computer-aided design of two-dimensional electric field type hyperthermia applicators using the finite-difference time-domain method. IEEE Transactions on Biomedical Engineering 1991; BME-38: 861–870
  • Smith G. S. A comparison of electrically short bare and insulated probes for measuring the local radio frequency electric field in biological systems. IEEE Transactions on Biomedical Engineering 1975; BME-22: 477–483
  • Smith G. S. Electric field probes in material media and their application in EMC. IEEE Trasactions on Electromagnetic Compatibility 1975; EMC-17: 206–211
  • Smith G. S. The electric field probe near a material interface with application to the probing of fields in biological bodies. IEEE Transactions on Microwave Theory Techniques 1979; MTT-27: 270–279
  • Smith G. S. Analysis of miniature electric field probes with resistive transmission lines. IEEE Transactions on Microwave Theory Techniques 1981; MTTT-29: 1213–1224
  • Stogryn A. Equations for calculating the dielectric constant of saline water. IEEE Transactions on Microwave Theory Techniques 1971; MTT-19: 733–736
  • Strohbehn J. W., Roemer R. B. A survey of computer simulations of hyperthermia treatments. IEEE Transactions on Biomedical Engineering 1984; BME-31: 136–148
  • Stuchly M. A., Stuchly S. S. Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies-a review. IEEE Transactions on Instrumentation and Measurement 1980; IM-29
  • Stuchly S. S., Rzepecka M. A., Isklander M. F. Permittivity measurements at microwave frequencies using lumped elements. IEEE Transactions on Instrumentation and Measurement 1974; IM-23: 56–62
  • Sullivan D. M., Borup D. T., Gandhi O. P. Use of finite-difference time-domain method in calculating EM absorption in human tis. IEEE Transactions on Biomedical Engineering 1987; BME-34: 148–157
  • Underwood H. R., Peterson A. F., Magin R. L. Electric field distribution near rectangular microstrip radiators for hyperthermia heating: theory versus experiment in water. IEEE Transactions on Biomedical Engineering 1992; 39: 146–153
  • White D. R. J. A Handbook Series on Electromagnetic Interference and Compatibility. Don White Consultants, Inc., Gainesville, VA 1980; Vol. 2: 2.1–2.23

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.