254
Views
15
CrossRef citations to date
0
Altmetric
Original Article

Liver hyperthermia and oxidative stress: role of iron and aldehyde production

&
Pages 215-226 | Received 17 Jul 1996, Accepted 25 Nov 1996, Published online: 09 Jul 2009

References

  • Allevi P., Anastasia M., Cajone F., Cuiffreda P., Sanvito A. M. Structural requirements of aldehydes produced in LPO for the activation of the heat‐shock genes in HeLa cells. Free Radicals in Biology and Medicine 1995; 18: 107–116
  • Aust S. D., Chignell C. F., Bray T. M., Kalyanaraman B., Mason R. P. Free radicals in toxicology. Toxicology Applied Pharmacology 1993; 120: 168–178
  • Biemon P., Swaak A. J. G., Beindorff C. M., Koster J. F. Superoxide dependent and ‐independent mechanisms of iron mobilization from ferritin by xanthine oxidase. Biochemistry Journal 1986; 239: 169–173
  • Bowers J. W., Hubbard R., Wagner D., Chisholm P., Murphy M., Leav I., Hamlet M., Maher J. Integrity of perfused rat liver at different heat loads. Laboratory Investigation 1981; 44: 99–104
  • Boyer R. F., McCleary C. J. Superoxide ion as a primary reductant in ascorbatemediated ferritin iron release. Free Radicals in Biology and Medicine 1987; 3: 389–395
  • Collins F. G., Skibba J. L. Improved in situ rat liver perfusion technique. Journal of Surgical Research 1980; 28: 65–70
  • Comporti M. Biology of disease: lipid peroxidation and cellular damage in toxic liver injury. Laboratory Investigation 1985; 53: 599–623
  • Comporti M. Glutathione depleting agents and lipid peroxidation. Chemistry and Physics of Lipids 1987; 45: 143–169
  • Davies K. J. A. Protein damage and degradation by oxygen radicals. I. General aspects. Journal of Biological Chemistry 1987; 262: 9895–9901
  • Dean R. T., Hunt J. V., Grant A. J., Yamamoto Y., Niki E. Free radical damage to proteins: The influence of the relative localization of radical generation, antioxidants, and target proteins. Free Radicals in Biology and Medicine 1991; 11: 161–168
  • DeLeve L. D., Kaplowitz N. Glutathione metabolism and its role in hepatotoxicity. Pharmacology and Therapeutics 1991; 52: 287–305
  • Dix T. A., Aikens J. Mechanisms and biological relevance of lipid peroxidation initiation. Chemical Research in Toxicology 1993; 6: 2–18
  • Esterbauer H. Cytotoxicity and genotoxicity of lipid peroxidation products. American Journal of Clinical Nutrition 1993; 57: 779S–786S, (Suppl)
  • Esterbauer H., Cheeseman K. H. Determination of aldehyde lipid peroxidation products: malonaldehyde and 4‐hydroxynonenal. Methods in Enzymology 1990; 186: 407–421
  • Esterbauer H., Schauer R. J., Zollner H. Chemistry and biochemistry of 4‐hydroxynonenal, malonaldehyde and related aldehydes. Free Radicals in Biology and Medicine 1991; 11: 81–128
  • Farber J. L. Mechanisms of cell injury by activated oxygen species. Environmental and Health Perspectives 1994; 102(Suppl 10)17–24
  • Gupta S., Rogers L. K., Smith C. V. Billiary excretion of lysosomal enzymes, iron, and oxidized protein in Fishcer‐344 and Sprague‐Dawley rats and the effects of diquat and acetaminophen. Toxicology and Applied Pharmacology 1994; 125: 42–50
  • Hems R., Ross D. B., Berry M. N., Krebs H. A. Gluconeogenesis in the perfused rat liver. Biochemistry Journal 1996; 101: 284–292
  • Kedderis G. L. Biochemical basis of hepatocellular injury. Toxicology and Pathology 1996; 4: 77–83
  • Lappin G. R., Clark L. C. Colorimetric method for determination of traces of carbonyl compounds. Analytical Chemistry 1951; 23: 541–542
  • Lepock J. R. Involvement of membranes in cellular responses to hyperthermia. Radiation Research 1982; 92: 433–438
  • Li G. C., Mivechi N. F., Weitzel G. Heat shock proteins, thermotolerance, and their relevance to clinical hyperthermia. International Journal of Hyperthermia 1995; 11: 459–488
  • Li H., Lightfoot R., Stevens J. L. Activation of heat shock factor by alkylating agents is triggered by glutathione depletion and oxidation of protein thiols. Journal of Biological Chemistry 1996; 271: 4805–4812
  • Minotti G., Aust S. D. The role of iron in oxygen radical mediated lipid peroxidation. Chemical‐Biological Interactions 1989; 71: 1–19
  • Moseley P. L. Mechanisms of heat adaptation: Thermotolerance and acclimatization. Journal of Laboratory and Clinical Medicine 1994; 123: 48–52
  • Palamanda J. R., Kehrer J. P. Inhibition of protein carbonyl formation and lipid peroxidation by glutathione in rat liver microsomes. Archives of Biochemistry and Biophysics 1992; 293: 103–109
  • Phal H. L., Baeuerle P. A. Oxygen and the control of gene expression. BioEssays 1994; 16: 497–502
  • Poli G. Liver damage due to free radicals. British Medical Bulletin 1993; 49: 604–620
  • Pompella A., Romanim A., Benedetti A., Comporti M. Loss of membrane protein thiols and lipid peroxidatio in allyl alcohol hepatotoxicity. Biochemical Pharmacology 1991; 41: 1255–1259
  • Powers R. H., Stadnicka A., Kalbfleish J. H., Skibba J. L. Involvement of xanthine oxidase in oxidative stress and iron release during hyperthermic liver perfusion. Cancer Research 1992; 52: 1669–1703
  • Pryor W. A., Das B., Church D. F. The ozonation of unsaturated fatty acids: aldehydes and hydrogen peroxide as products and possible mediators of ozone toxicity. Chemical Research in Toxicology 1991; 4: 342–348
  • Reif D. W., Schubert J. S., Aust S. D. Iron released from ferritin and lipid peroxidation by radiolytically generated reducing radicals. Archives of Biochemistry and Biophysics 1988; 264: 238–243
  • Schaich K. M. Metals and lipid oxidation. Contemporary issues. Lipids 1992; 27: 209–218
  • Schoeniger L. O., Andrenoi K. A., Ott G. R., Risby T. H., Bulkley G. B., Udelsman R., Burdick J. F., Buchman T. G. Induction of heat‐shock gene expression in postischemic pig liver depends on superoxide generation. Gastroenterology 1994; 106: 177–184
  • Sies H. Oxidative stress: introductory remarks. Oxidative Stress, H. Sies. Academic Press, New York 1985a; 1–8
  • Sies H. Hydroperoxides and thiol oxidants in the study of oxidative stress in intact cells and organs. Oxidative Stress, H. Sies. Academic Press, New York 1985b; 73–90
  • Sies H., Akerboom T. P. M. Glutathione Disulfide (GSSG) efflux from cells and tissues. Methods in Enzymology, S. P. Colowick, N. O. Kaplan. Academic Press, New York 1984; vol. 105: 445–151
  • Skibba J. L., Collins F. G. Effect of temperature on biochemical functions in the isolated perfused rat liver. Journal of Surgical Research 1978; 24: 435–441
  • Skibba J. L., Condon R. E. Hyperthermic isolation‐perfusion in vivo of the canine liver. Cancer 1983; 51: 1303–1309
  • Skibba J. L., Powers R. H., Stadnika A., Kalbfleisch J. H. The effect of hyperthermia on conversion of rat hepatic xathine dehydrogenase to xanthine oxidase. Biochemical Pharmacology 1988; 37: 4592–4595
  • Skibba J. L., Powers R. H., Stadnicka A., Kalbfleisch J. H. The effect of hyperthermia on xanthine oxidase activity and glutathione levels in the perfused rat liver. Journal of Biochemical Toxicology 1989a; 4: 119–125
  • Skibba J. L., Powers R. H., Stadnika A., Kalbfleisch J. H. Lipid peroxidation caused by hyperthermic perfusion of rat liver. Biochemical Pharmacology 1990; 40: 1411–1414
  • Skibba J. L., Powers R. H., Stadnika A., Cullinane D. W., Almagro U. A., Kalbfleisch J. H. Oxidative stress as a precursor to the irreversible hepatocellular injury caused by hyperthermia. International Journal of Hyperthermia 1991; 7: 749–761
  • Skibba J. L., Quebbeman E. J., Sonsalla J. C., Petroff R. J. Alterations in biochemical functions during hyperthermic isolation‐perfusion of the human liver. Journal of Surgical Research 1986a; 41: 40–438
  • Skibba J. L., Quebbeman E. J. Hyperthermia of liver. Hyperthermia in Cancer Treatment, L. J. Anghileri, J. Robert. CRC Press, Boca Raton 1987; 47–67
  • Skibba J. L., Quebbeman E. J. Tumoricidal effects and patient survival after hyperthermic liver perfusion. Archives of Surgery 1986; 121: 1266–1271
  • Skibba J. L., Sonsalla J. C., Kalbfleisch J. H. Hyperthermic liver perfusion and release of lysosomal enzymes. Journal of Surgical Research 1987; 43: 558–564
  • Skibba J. L., Stadnicka A., Kalbfleisch J. H. Hyperthermic liver toxicity: a role for oxidative stress. Journal of Surgical Oncology 1989b; 40: 103–112
  • Skibba J. L., Quebbeman E. J., Kalbfleisch J. H. Nitrogen metabolism and lipid peroxidation during hyperthermic perfusion of human livers with cancer. Cancer Research 1986b; 46: 6000–6003
  • Slater A. F. G., Stefen C., Nobel I., vanden Dobblesteenn D. J., Orrenius S. Signalling mechanisms and oxidative stress in apoptosis. Toxicology Letters 1995; 82/83: 149–153
  • Stadtman E. R. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal‐catalyzed reactions. Annual Review of Biochemistry 1993; 62: 797–821
  • Sugano T., Suda K., Shimada M., Oshino N. Biochemical and ultrastructural evaluation of isolated rat liver systems perfused with a hemoglobin‐free medium. Journal of Biochemistry 1978; 83: 995–1007
  • Suzuki T., Sasaki H., Komatsu M., Miyazawa T., Isono H. Cytotoxicity of 1,3‐dichloropropene and cellular phospholipid peroxidation in isolated rat hepatocytes, and its prevention by oe‐tocopherol. Biology and Pharmaceutical Bulletin 1994; 17: 1351–1354
  • Tacchini L., Pogliaghi G., Radice L., Anzon E., Bernelli‐Zazzera A. Differential activation of heat‐shock and oxidation‐specific stress genes in chemically induced oxidative stress. Biochemical Journal 1995; 309: 453–459
  • Tappel A. L. Measurement of and protection from vivo lipid peroxidation Oxygen, ischemia and inflammation. Free Radicals in Biology, W. A. Pryor. Academic Press, New York 1980; vol. IV: 1–17
  • Thomas C. E., Morehouse L. A., Aust S. D. Ferritin and superoxide‐dependent lipid peroxidation. Journal of Biological Chemistry 1985; 260: 3275–3280
  • Tietze F. Enzymatic method for quantitative determination of nanogram amounts of total and oxidized glutathione. Analytical Biochemistry 1969; 27: 502–522
  • Weiss S. J. Acta Physiologica Scandanavia 1986; 548: 9–37, Suppl
  • Wendel A., Dumelin E. E. Hydrocarbon exhalation. Methods in Enzymology 1981; 77: 10–15
  • Zarling E. J., Clapper M. Technique for gas‐chromatographic measurement of volatile alkanes from single‐breath samples. Clinical Chemistry 1987; 33: 140–141

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.