92
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Research and Development of Hyperthermia Machines for Present and Future Clinical Needs

, , &
Pages 1-11 | Received 28 Apr 1997, Accepted 28 Aug 1997, Published online: 09 Jul 2009

References

  • Amemiya Y., Tada H., Asahina G. Numerical simulation of temperature rise inside a cylinder simulating a human body exposed by surrounding RF waves. Hyperthermic Oncology in Japan 86, Y. Onoyama. MAG BROS., Tokyo 1987; 55–56
  • Cetas T. C., Richards W. F., Gross E. J. Physics today, clinic tomorrow. A plan for new system development. International Journal of Hyperthermia 1994; 10: 411–417
  • Clegg S. T., Das S. K., Zhang Y., Macfall J., Fullar E., Samulski T. V. Verification of a hyperthermia model method using MR thermometry. International Journal of Hyperthermia 1995; 11: 409–424
  • Delannoy J., LeBihan D., Hoult D. I., Levin R. L. Hyperthermia system combined with a magnetic resonance imaging unit. Medical Physics 1990; 17: 855–860
  • Diederich C. J., Stauffer P. R. Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia. International Journal of Hyperthermia 1993; 9: 227–246
  • Fabre J. J., Chive M., Dubois L., Camart J. C. 915 MHz microwave interstitial hyperthermia. Part I: Theoretical and experimental aspects with temperature control by multifrequency radiometry. International Journal of Hyperthermia 1993; 9: 433–444
  • Fenn A. J., King G. A. Adaptive radiofrequency hyperthermia-phased array system for improved cancer therapy: phantom target measurements. International Journal of Hyperthermia 1994; 10: 189–208
  • Franconi C, Banci G., Tiberio C. A. RF H-field fluxtubes for safe and controlled hyperthermia. International Journal of Hyperthermia 1994; 4: 537–551
  • Hornsleth S. N., Raskmark P., Frydendal L., Mella O., Dahl O. An online automatic quality assurance system for phased array regional hyperthermia systems. Hyperthermic Oncology 1996, C. Franconi, G. Arcangeli, R. Cavaliere. TOR VERGATA, Rome 1996; 571–573
  • Kahn T., Bettag M., Ulrich F., Schwarzmaier H-J., Schober R., Fuerst G., Moedder U. MRI-guided laser-induced interstitial thermotherapy of cerebral neoplasms. Journal of Computer Assisted Tomography 1994; 18: 519–532
  • Kato H., Hand J. W., Prior M. V., Furukawa M., Yamamoto O., Ishida T. Control of specific absorption rate distribution using capacitive electrodes and inductiveaperture-type applicators: implications for radiofrequency hyperthermia. IEEE Transactions on Biomedical Engineering 1991a; BME-38: 644–647
  • Kato H., Furukawa M., Uchida N., Kasai T., Ishida T. A new capacitive type heating method inducing less heat in fat layers. Japanese Journal of Hyperthermic Oncology 1991b; 7: 452–454
  • Kato K., Nishimachi T., Kasai E., Matsuda J. A study of re-entrant type resonant cavity applicator for deep-tumor hyperthermia. Hyperthermic Oncology in Japan 95, H. Kanai. Procom International, Tokyo 1995; 216–217
  • Kato H., Hyodo K., Akasaka N., Nishimura K., Uchida N., Kasai T., Sugimura K. Optimization of bolus for capacitive type heating. Japanese Journal of Hyperthermic Oncology 1997; 13: 10–17
  • Kuroda K., Tamai N., Suzuki Y., Ishihara Y., Okamoto K., Suzuki Y. Non-invasive imaging of internal body temperature using proton chemical shift. Medical Imaging Technology 1995; 13: 703–709
  • Kuroda M., Inamura K., Tahara S., Uno H., Takaguchi K., Tanaka A., Joja I., Takeda Y., Asaumi J., Mikami Y., Kawasaki S., Hiraki Y. Development of a capacitive heating applicator for the simultaneous radiohyper thermotherapy of superficial and shallow-seated tumors. Japanese Journal of Hypertheric Oncology 1994; 10: 189–197
  • Lee E. R., Wilsey T. R., Tarczy-Hornoch P., Kapp D. S., Fessenden P., Lohrbach A., Prionas S. D. Body conformable 915 MHz microstrip array applicators for large surface area hyperthermia. IEEE Transactions on Biomedical Engineering 1992; 39: 470–483
  • Mella O., Hornsleth S. N., Krossnes B. K., Schem B. C., Dahl O. Strategies to improve regional hyperthermia (RHT) with the BSD-2000 system. Abstract of the 14th Annual Meeting of the European Society for Hyperthermic Oncology. 1995; 39–42
  • Mizushina S., Ohba H., Abe K., Mizoshiri S., Sugiura T. Recent trends in medical microwave radiometry. IEICE Transactions on Communications 1995; E78-B: 789–798
  • Moros E. G., Straube W. L., Klein E. E., Yousaf M., Myerson R. J. Simultaneous delivery of electron beam therapy and ultrasound hyperthermia using scanning reflectors: a feasibility study. International Journal of Radiation Oncology, Biology and Physics 1995; 31: 893–904
  • Paulsen K. D., Moskowitz M. J., Ryan T. P., Mitchell S. E. In vivo experience with EIT as a noninvasive thermal imaging method during local hyperthermia. Hyperthermic Oncology 1996, C. Franconi, G. Arcangeli, R. Cavaliere. Tor Vergata, Rome 1996; 427–429
  • Prior M. V., Lumori M. L. D., Hand J. W., Lamaitre G., Schneider C. J., Van Dijk J. D. P. The use of a current sheet applicator array for superficial hyperthermia: incoherent versus coherent operation. IEEE Transactions on Biomedical Engineering 1995; BME-42: 694–698
  • Raganella L., Banci G., Vannucci I., Franconi C, Tiberio C. A. 27 MHz conformal capacitive ring (CR) applicators for uniform hyperthermic/diathermic treatment of body segments with axial fields. IEEE Transactions on Biomedical Engineering 1989; BME-36: 1124–1132
  • Raskmark P., Larsen T., Hornsleth S. N. Multi-applicator hyperthermia system description using scattering parameters. International Journal of Hyperthermia 1994; 10: 143–151
  • Saito M., Kato H., Nikawa Y., Ito K., Kanai H., Kikuchi M., Koizumi K., Kotsuka Y., Saitoh Y., Takayama N., Tsutsumi S., Hiraoka M., Maeta M., Matsuki H., Matsuda J., Mizushina S., Yamaura I., Yamashita T., Yamamoto I., Kakei M., Tanaka Y., Terashima H., Nishimura Y. Analysis of problems in clinical use of heating and temperature measuring equipment and solution to the problems. Japanese Journal of Hyperthermic Oncology 1996; 12: 431–436
  • Samulski T. V., Clegg S. T., Das S., MacFall J., Prescott D. M. Application of new technology in clinical hyperthermia. International Journal of Hyperthermia 1994; 10: 389–394
  • Sato G., Shibata C, Sekimukai S., Wakabayashi H., Mitsuka K., Giga K. Phase-controlled circular array heating equipment for deep-seated tumors: preliminary experiments. IEEE Transactions on Microwave Theory and Techniques 1986; MTT-34: 520–525
  • Shaw J. A., Durney C. H., Christensen D. A. Computer-aided design of two-dimensional electric-type hyperthermia applicators using the finite-difference time-domain method. IEEE Transactions on Biomedical Engineering 1991; BME-38: 861–870
  • Sherar M. D., Liu F. F., Newcombe D. J., Cooper B., Levin W., Taylor W. B., Hunt J. W. Beam shaping for microwave waveguide hyperthermia applicators. International Journal of Radiation Oncology, Biology and Physics 1993; 25: 849–857
  • Sterzer F., Paglione R. W., Friedenthal E., Mendecki J. A microwave apparatus for producing uniform hyperthermic temperatures over large surfaces. IEEE MTT-S International Microwave Symposium Digest of Technical Papers. 1985; 90–92
  • Sullivan D. M., Ben-Yosef R., Kapp D. S. Stanford 3D hyperthermia treatment planning system. Technical review and clinical summary. International Journal of Hyperthermia 1993; 9: 627–643
  • Ueda K., Okamura T., Fujita K., Akita H., Kohri K., Itou T., Masui Y., Kano E. The effectiveness of the gripping method as an adjunct to local hyperthermia Thermotron RF-8 treatment of deep seated tumors. Japanese Journal of Hyperthermic Oncology 1995; 11: 87–91
  • Umehara T. Microwave capacitive hyperthermia. Japanese Journal of Hyperthermic Oncology 1989; 5: 141–148
  • Van Leeuwen G. M. J., Kotte A. N. T. J., De Bree J., Van der Koijk J. F., Lagendijk J. J. W. Investigation of the thermal effects of separate vessel generations in artificial vasulcar networks. Hyperthermic Oncology 1996, C. Franconi, G. Arcangeli, R. Cavaliere. Tor Vergata, Rome 1996; Volume 11: 495–497
  • Van Rhoon G. C., Raskmark P., Hornsleth S. N., Van den Berg P. M. Radio-frequency ring applicator: energy distributions measured in the CDRH phantom. Medical and Biological Engineering and Computing 1994; 72: 643–648
  • Yamanashi W. S., Fesen M. R., Anderson D. W., Sy A. M., Lester P. D. Field-focusing hyperthermia and magnetic resonance imaging (MRI) with a grounded probe and a commercial MRI scanner. Medical Instrumentation 1985; 19: 217–223
  • Yamazaki K., Ishiyama A. RF magnetic induction type hyperthermia using a large ferrite core in troidal shape, having possibility as deep regional heating and selective heating. Japanese Journal of Hyperthermic Oncology 1989; 5: 133–140

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.