191
Views
19
CrossRef citations to date
0
Altmetric
Original Article

Non-invasive thermal assessment of tissue phantoms using an active near field microwave imaging technique

, , &
Pages 513-534 | Received 20 Mar 1998, Accepted 09 Jul 1998, Published online: 09 Jul 2009

References

  • Blad B., Persson B., Lindstrom K. Quantitative assessment of impedance tomography for temperature measurements in hyperthermia. International Journal of Hyperthermia 1992; 8: 33–43
  • Burdette E. C., Cain F. L., Seals J. In-situ tissue permittivity at microwave frequencies: perspective, techniques, and results. Medical Applications of Microwave Imaging, L. K. Larsen, J. H. Jacobi, New York 1986a; 13–40, Chapter 2
  • Burdette E. C., Friedrich P. G., Seaman R. L., Larsen L. E. In-situ permittivity of canine brain: Regional variations and post-mortem changes. IEEE Transaction Microwave Theory and Techniques 1986b; MTT34: 38–50
  • Carter D. L., MacFall J. R., Clegg S. T., Wan X., Prescott D. M., Charles H. C., Samulski T. V. Magnetic resonance thermometry during hyperthermia for human high-grade sarcoma. International Journal of Radiation Oncology, Biology and Physics 1998; 40: 815–822
  • Chive M. Use of microwave radiometry for hyperthermia monitoring and as a basis for thermal dosimetry. Methods of Hyperthermia Control, M. Gautherie. Springer-Verlag, Berlin 1990; 113–128
  • DePorter J., De Wagter C., De Deene Y., Thomsen C., Stahlberg T. F., Achten E. The proton-resonance-frequency-shift method compared with molecular diffusion for quantitative measurement of two-dimensional time dependent temperature distributions in a phantom. Journal of Magnetic Resonance Series B 1994; 103: 2340–2341
  • Dewhirst M. W., Griffin T. W., Smith A. R., Parker R. G., Hanks G. E., Brady L. W. Intersociety council on radiation oncology essay on the introduction of new medical treatments into practice. Journal of the National Cancer Institute 1993; 85: 951–957
  • Dubois L., Pribetich J., Fabre J., Chive M., Moschetto Y. Non-invasive microwave multifrequency radiometry used in microwave hyperthermia for bi-dimen-sional reconstruction of temperature patterns. International Journal of Hyperthermia 1993; 9: 415–43
  • Duck F. A. Physical properties of tissues: a comprehensive reference book. Academic Press, London 1990
  • Hasted J. B. Aqueous Dielectrics. Chapman and Hall, London 1972
  • Hawley M. S., Conway J., Amasha H., Mangnall Y. F., Van Rhoon G. C. Electrical impedance tomography: prospects for non-invasive control of deep hyperthermia treatments. Frontiers in Medical and Biological Engineering 1992; 4: 119–128
  • Jofre L., Hawley M. S., Broquetas A., De los Reyes E., Ferrando M., Elias-Fuste A. R. Medical imaging with a microwave tomographic scanner. IEEE Transactions of Biomedical Engineering 1990; 37: 303–312
  • Kapp D. S., Cox R. S. Thermal treatment parameters are most predictive of outcome in patients with single tumor nodules per treatment field in recurrent adenocarcinoma of the breast. International Journal of Radiation Oncology, Biology and Physics 1995; 33: 887–899
  • Leopold K. A., Dewhirst M. W., Samulski T. V., Dodge R. K., George S. L., Blivin J. L., Prosnitz L. R., Oleson J. R. Cumulative minutes with T90 greater than TEMPindex is predictive of response of superficial malignancies to hyperthermia and radiation. International Journal of Radiation Oncology, Biology and Physics 1993; 25: 841–847
  • MacFall J., Prescott D. M., Fullar E., Samulsk T. V. Temperature dependence of canine brain tissue diffusion coefficient measured in vivo with magnetic resonance echo-planar imaging. International Journal of Hyperthermia 1995; 11: 73–86
  • Mallorqui J. J., Broquetas A., Jofre L., Cardama A. Noninvasive active microwave thermometry with a microwave tomographic scanner in hyperthermia treatments. ACES Special Issue on Bioelectromagnetic Computations, A. H. J. Fleming, K. H. Joyner. ACES Journal. 1992; 7: 121–127
  • Mallorqui J. J., Joachimowicz N., Broquetas A., Bolomey J. C. Quantitative images of large biological bodies in microwave tomography by using numerical and real data. Electronics Letters 1996; 32: 2138–2140
  • Meaney P. M., Paulsen K. D., Chang J. T. Near-field microwave imaging of biologically-based materials using a monopole transceiver system. IEEE Transactions of Microwave Theory and Techniques 1998; 46: 31–45
  • Meaney P. M., Paulsen K. D., Ryan T. P. Two-dimensional hybrid element image reconstruction for TM illumination. IEEE Transactions of Antennas and Propagation 1995a; 43: 239–247
  • Meaney P. M., Paulsen K. D., Hartov A., Crane R. K. An active microwave imaging system for reconstruction of 2D electrical property distributions. IEEE Transactions of Biomedical Engineering 1995b; 42: 1017–1026
  • Meaney P. M., Paulsen K. D., Hartov A., Crane R. K. Microwave imaging for tissue assessment: initial evaluation in muti-target tissue equivalent phantoms. IEEE Transactions of Biomedical Engineering 1996; 43: 878–890
  • Miyakawa M. tomographic measurement of temperature change in phantoms of the human body by chirp radar-type microwave computed tomography. Medical and Biological Engineering and Computing 1993; 31: 531–536
  • Mizushina S., Ohba H., Abe K., Sugiura T., Kondoh K., Nakamura Y., Mamouni A., Leroy A. Temperature profiling using multifrequency microwave radio-metry. Proceedings of the 7th International Congress of Hyperthermic Oncology, C. Franconi, G. Arcangeli, R. Cavaliere, II. 1996; 416–418
  • Moskowitz M. J., Paulsen K. D., Ryan T. P., Pang D. Temperature field estimation using electrical impedance profiling methods: II experimental system description and phantom results. International Journal of Hyperthermia 1994; 10: 229–245
  • Moskowitz M. J., Ryan T. P., Paulsen K. D., Mitchell S. E. Clinical implementation of electrical impedance tomography with hyperthermia. International Journal of Hyperthermia 1995; 11: 141–149
  • Overgaard J., Gonzalez-Gonzales D., Hulshof M. C. C. M., Arcangeli G., Dahl O., Mella O., Bentzen S. M. Randomized trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. The Lancet 1995; 345: 540–543
  • Paulsen K. D., Jiang H. An enhanced electrical impedance imaging algorithm for hyperthermia applications. International Journal of Hyperthermia 1997; 13: 459–480
  • Paulsen K. D., Meaney P. M., Moskowitz M. J., Sullivan J. M., Jr. A dual scheme for finite element based reconstruction algorithms. IEEE Transactions on Medical Imaging 1995; 14: 504–514
  • Paulsen K. D., Moskowitz M. J., Ryan T. P., Mitchell S. E., Hoopes P. J. Initial in-vivo experience with EIT as a thermal estimator during hyperthermia. International Journal of Hyperthermia 1996; 12: 573–591
  • Perez C. A., Pajak T., Emami B., Hornbeck N. B., Tupchong L., Rubin P. Radomized phase III study comparing irradiation and hyperthermia with irradiation alone in superficial measurable tumors. American Journal of Clinical Oncology 1991; 14: 133–141
  • Pethig R. Dielectric properties of biological materials: biophysical and medical applications. IEEE Transactions on Electrical Insulation 1984; 19: 453–474
  • Prosnit L. R., Dewhirst M. W. Progress toward a thermal dosimetry system. International Journal of Radiation Oncology, Biology and Physics 1995; 33: 963–964
  • Rius J. M., Pichot C., Jofre L., Bolomey J. C., Joachimowicz N., Broquetas A., Ferrando M. Planar and Cylindrical active microwave temperature imaging: numerical simulations. IEEE Transactions on Medical Imaging 1992; 11: 457–469
  • Schwan H. P. Electrical Properties of Tissues and Cell Suspensions. Advances in Biological and Medical Physics, J. H. Lawrence, C. A. Tobias. Academic Press, New York 1957; 5: 147–209
  • Schwan H. P., Li K. Capacity and conductivity of body tissues at ultrahigh frequencies. Proceedings of the IRE 1953; 41: 1735–1740
  • Semenov S. Y., Bulyshev A. E., Souvorov A. E., Svenson R. H., Sizov Y. E., Borisov V. Y., Posukh V. G., Kozlov I. M., Nazarov A. G., Tatsis G. P. Microwave tomography: Theoretical and experimental investigation of the iteration reconstruction algorithm. IEEE Transactions on Microwave Theory and Techniques 1998; 46: 133–141
  • Semenov S., Svenson R., Boulyshev A., Souvorov A., Borisov V., Sizov Y., Starostin A., Dezern K., Tatsis G., Baranov V. Microwave tomography: two-dimensional system for biological imaging. IEEE Transactions on Biomedical Engineering 1996; 43: 869–877
  • Siep R., Ebbini E. S. Noninvasive estimation of tissue temperature response of heating fields using diagnostic ultrasound. IEEE Transactions of Biomedical Engineering 1995; 42: 828–839
  • Siep R., VanBaren P., Cain C. A., Ebbini E. S. Noninvasive real-time multipoint temperature control for ultrasound phased array treatments. IEEE Transactions of Ultrasonics, Ferroelectrics and Frequency Control 1996; 43: 1063–1073
  • Simon C, VanBaren P., Ebbini E. S. Motion compensation algorithm for two-dimensional temperature estimation using diagnostic pulse-echo ultrasound. Surgical Applications of Energy, Proceedings of SPIE 1998; 3249: 182–192
  • Stogryn A. Equations for calculating the dielectric constant of saline water. IEEE Transactions Microwave Theory and Techniques 1971; 19: 733–736
  • Dielectric Materials and Applications, A. R. Von Hippel. The Technology Press of MIT and Wiley & Sons, Inc, New York 1954
  • Webb A. G., Wong M., Niesman M., Kolbeck K. J., Wilmes L. J., Magin R. L., Suslick K. J. In-vivo NMR thermometry with liposomes containing Co complexes. International Journal of Hyperthermia 1995; 11: 821–827
  • Wust P., Konstanczak P., Sander B., Knappe V., Schrunder S., Wlodarczyk W., Frenzel T., Muller G., Felix R. Non-invasive thermometry performed by measuring the chemical shift of a lanthanide complex. Proceedings of the 7th International Congress of Hyperthermic Oncology, C. Franconi, G. Arcangeli, R. Cavaliere. 1996; II: 436–438

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.