140
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Delayed post-ischaemic administration of xenon reduces brain damage in a rat model of global ischaemia

, , , , &
Pages 364-369 | Received 02 Aug 2013, Accepted 10 Nov 2013, Published online: 30 Dec 2013

References

  • Eger EI, Larson CP. Anaesthetic solubility in blood and tissues: Values and significance. British Journal of Anaesthesia 1964;36:140–149
  • Dickinson R, Peterson BK, Banks P, Simillis C, Martin JC, Valenzuela CA, Maze M, Franks NP. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor by the anesthetics xenon and isoflurane: Evidence from molecular modeling and electrophysiology. Anesthesiology 2007;107:756–767
  • Franks NP, Dickinson R, de Sousa SLM. How does xenon produce anaesthesia? Nature 1998;396:324
  • Jevtović-Todorović V, Todorović SM, Mennerick S, Powell S, Dikranian K, Benshoff N, Zorumski CF, Olney JW. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nature Medicine 1998;4:460–463
  • Dohmen C, Kumura E, Rosner G, Heiss WD, Graf R. Extracellular correlates of glutamate toxicity in short-term cerebral ischemia and reperfusion: A direct in vivo comparison between white and gray matter. Brain Research 2005;1037:43–51
  • Wilhelm S, Ma D, Maze M, Franks NP. Effects of Xenon on in vitro and in vivo models of neuronal injury. Anesthesiology 2002;96:1485–1491
  • Parsons CG, Danysz W, Quack G. Glutamate in CCNS disorders as a target for drug development: An update. Drug News & Perspectives 1198;11:523–569
  • Ferrer-Montiel AV, Sun W, Montal M. Molecular design of the N-methyl-D-aspartate receptor binding site for phencyclidine and dizolcipine. Proceedings of the National Academy of Sciences 1995;92:8021–8025
  • Abraini Jacques H, David Hélène N, Marc L. Potentially neuroprotective and therapeutic properties of nitrous oxide and xenon. Annals of the New York Academy of Sciences 2005;1053:289–300
  • Derwall M, Timper A, Kottmann K, Rossaint R, Fries M. Neuroprotective effects of the inhalational anesthetics isoflurane and xenon after cardiac arrest in pigs. Critical Care Medicine 2008;36:S492–S495
  • Schmidt M, Marx T, Glöggl E, Reinelt H, Schirmer U. Xenon attenuates cerebral damage after ischemia in pigs. Anesthesiology 2005;102:929–936
  • David HN, Haelewyn B, Rouillon C, Lecoq M, Chazalviel L, Apiou G, Risso JJ, Lemaire M, Abraini JH. Neuroprotective effects of xenon: A therapeutic window of opportunity in rats subjected to transient cerebral ischemia. The FASEB Journal 2008;22:1275–1286
  • David HN, Leveille F, Chazalviel L, MacKenzie ET, Buisson A, Lemaire M, Abraini JH. Reduction of ischemic brain damage by nitrous oxide and xenon. The FASEB Journal 2003;23:1168–1173
  • Homi HM, Yokoo N, Ma D, Warner DS, Franks NP, Maze M, Grocott HP. The neuroprotective effect of xenon administration during transient middle cerebral artery occlusion in mice. Anesthesiology 2003;99:876–881
  • Dingley J, Tooley J, Porter H, Thoresen M. Xenon provides short-term neuroprotection in neonatal rats when administered after hypoxia-ischemia. Stroke 2006;37:501–506
  • Yang T, Zhuang L, Rei Fidalgo AM, Petrides E, Terrando N, Wu X, Sanders RD, Robertson NJ, Johnson MR, Maze M, et al. Xenon and sevoflurane provide analgesia during labor and fetal brain protection in a perinatal rat model of hypoxia-ischemia. PLoS One 2012;7:e37020
  • Hobbs C, Thoresen M, Tucker A, Aquilina K, Chakkarapani E, Dingley J. Xenon and hypothermia combine additively, offering long-term functional and histopathologic neuroprotection after neonatal hypoxia/ischemia. Stroke 2008;39:1307–1313
  • Martin JL, Ma D, Hossain M, Xu J, Sanders RD, Franks NP, Maze M. Asynchronous administration of xenon and hypothermia significantly reduces brain infarction in the neonatal rat. British Journal of Anaesthesia 2007;98:236–240
  • Hainsworth Atticus H, Markus HS. Do in vivo experimental models reflect human cerebral small vessel disease? A systematic review. Journal of Cerebral Blood Flow & Metabolism 2008;28:1877–1891
  • Farkas E, Luiten PGM, Bari F. Permanent, bilateral common carotid artery occlusion in the rat: A model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Research Reviews 2007;54:162–180
  • Ginsberg MD, Busto R. Rodent models of cerebral ischemia. Stroke 1989;20:1627–1642
  • Ulrich PT, Kroppenstedt S, Heimann A, Kempski O. Laser-Doppler Scanning of local cerebral blood flow and reserve capacity and testing of motor and memory functions in a chronic 2-vessel occlusion model in rats. Stroke 1998;29:2412–2420
  • Tsuchiya M, Sako K, Yura S, Yonemasu Y. Cerebral blood flow and histopathological changes following permanent bilateral carotid artery ligation in Wistar rats. Experimental Brain Research 1992;89:87–92
  • Marosi M, Rákos G, Robotka H, Németh H, Sas K, Kis Z, Farkas T, Lür G, Vécsei L, Toldi J. Hippocampal (CA1) activities in Wistar rats from different vendors: Fundamental differences in acute ischemia. Journal of Neuroscience Methods 2006;156:231–235
  • Wolfrum S, Pierau C, Radke PW, Schunkert H, Kurowski V. Mild therapeutic hypothermia in patients after out-of-hospital cardiac arrest due to acute ST-segment elevation myocardial infarction undergoing immediate percutaneous coronary intervention. Critical Care Medicine 2008;36:1780–1786
  • David HN, Ansseau M, Lemaire M, Abraini JH. Nitrous oxide and xenon prevent amphetamine-induced carrier-mediated dopamine release in a memantine-like fashion and protect against behavioral sensitization. Biological Psychiatry 2006;60:49–57
  • Haelewyn B, David HN, Rouillon C, Chazalviel L, Lecocq M, Risso JJ, Lemaire M, Abraini JH. Neuroprotection by nitrous oxide: Facts and evidence. Critical Care Medicine 2008;36:2651–2659
  • Jevtović-Todorović V, Todorović SM, Mennerick S, Powell S, Dikranian K, Benshoff N, Zorumski CF, Olney JW. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nature Medicine 1998;4:460–463
  • Nagata A, Nakao Si S, Nishizawa N, Masuzawa M, Inada T, Murao K, Miyamoto E, Shingu K. Xenon inhibits but N2O enhances ketamine-induced c-Fos expression in the rat posterior cingulate and retrosplenial cortices. Anesthesia & Analgesia 2001;92:362–368
  • Thoresen M, Bågenholm R, Løberg EM, Apricena F, Kjellmer I. Posthypoxic cooling of neonatal rats provides protection against brain injury. Archives of Disease Childhood: Fetal & Neonatal Edition 1996;74:F3–F9
  • Zhang W, Hart J, McLeod HL, Wang HL. Differential expression of the AP-1 transcription factor family members in human colorectal epithelial and neuroendocrine neoplasms. American Journal of Clinical Pathology 2005;124:11–19
  • Ma D, Hossain M, Chow A, Arshad M, Battson RM, Sanders RD, Mehmet H, Edwards AD, Franks NP, Maze M. Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia. Annals of Neurology 2005;58:182–193
  • David HN, Haelewyn B, Rouillon C, Lecoq M, Chazalviel L, Apiou G, Risso JJ, Lemaire M, Abraini JH. Neuroprotective effects of xenon: A therapeutic window of opportunity in rats subjected to transient cerebral ischemia. The FASEB Journal 2008;22:1275–1286
  • Rogers A, Schmuck G, Scholz G, Williams DC. c-fos mRNA expression in rat cortical neurons during glutamate-mediated excitotoxicity. Toxicological Sciences 2004;82:562–569
  • Griffiths R, Grieve A, Scollon J, Scott M, Williams C, Meredith C. Preliminary evaluation of an in vitro test for assessment of excitotoxicity by measurement of early gene (c-fos mRNA) levels. Toxicology in Vitro 2000;14:447–458
  • Kumar K, Wu X, Evans AT. Expression of c-fos and fos-B proteins following transient forebrain ischemia: Effect of hypothermia. Molecular Brain Research 1996;42:337–343
  • Mancuso A, Derugin N, Hara K, Sharp FR, Weinstein PR. Mild hypothermia decreases the incidence of transient ADC reduction detected with diffusion MRI and expression of c-fos and hsp70 mRNA during acute focal ischemia in rats. Brain Research 2000;887:34–45
  • Romanic AM, Madri JA. Extracellular matrix-degrading proteinases in the nervous system. Brain Pathology 1994;4:145–156
  • Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, Lo EH. Role for Matrix Metalloproteinase 9 after focal cerebral ischemia[colon] effects of gene knockout and enzyme inhibition with BB-94. Journal of Cerebral Blood Flow & Metabolism 2000;20:1681–1689
  • Jiang X-F, Namura S, Nagata I. Matrix metalloproteinase inhibitor KB-R7785 attenuates brain damage resulting from permanent focal cerebral ischemia in mice. Neuroscience Letters 2001;305:41–44
  • Chen W, Hartman R, Ayer R, Marcantonio S, Kamper J, Tang J, Zhang JH. Matrix metalloproteinases inhibition provides neuroprotection against hypoxia-ischemia in the developing brain. Journal of Neurochemistry 2009;111:726–736
  • Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC. Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: Inhibition of Matrix Metalloproteinase-9 reduces infarct size. Stroke 1998;29:1020–1030
  • Kelly PJ, Morrow JD, Ning M, Koroshetz W, Lo EH, Terry E, Milne GL, Hubbard J, Lee H, Stevenson E, et al. Oxidative stress and Matrix Metalloproteinase-9 in acute ischemic stroke. Stroke 2008;39:100–104
  • Ramos-Fernandez M, Bellolio MF, Stead LG. Matrix Metalloproteinase-9 as a marker for acute ischemic stroke: A systematic review. Journal of Stroke and Cerebrovascular Diseases: The Official Journal of National Stroke Association 2011;20:47–54
  • Gawlak M, Górkiewicz T, Gorlewicz A, Konopacki FA, Kaczmarek L, Wilczynski GM. High resolution in situ zymography reveals matrix metalloproteinase activity at glutamatergic synapses. Neuroscience 2009;158:167–176
  • Michaluk P, Mikasova L, Groc L, Frischknecht R, Choquet D, Kaczmarek L. Matrix Metalloproteinase-9 controls NMDA receptor surface diffusion through Integrin Ξ21 signaling. The Journal of Neuroscience 2009;29:6007–6012
  • David HN, Leveille F, Chazalviel L, MacKenzie ET, Buisson A, Lemaire M, Abraini JH. Reduction of ischemic brain damage by nitrous oxide and xenon. Journal of Cerebral Blood Flow & Metabolism 2003;23:1168–1173
  • Ma D, Wilhelm S, Maze M, Franks NP. Neuroprotective and neurotoxic properties of the inert gas, xenon. British Journal of Anaesthesia 2002;89:739–746

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.