506
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Brain injury biomarkers in the setting of cardiac surgery: Still a world to explore

, &
Pages 10-17 | Received 07 Oct 2014, Accepted 01 Aug 2015, Published online: 10 Nov 2015

References

  • Filsoufi F, Rahmanian PB, Castillo JG, Bronster D, Adams DH. Incidence, imaging analysis, and early and late outcomes of stroke after cardiac valve operation. American Journal of Cardiology 2008;101:1472–1478
  • Menache CC, Du Plessis AJ, Wessel DL, Jonas RA, Newburger JW. Current incidence of acute neurologic complications after open-heart operations in children. Annals of Thoracic Surgery 2002;73:1752–1758
  • Roach GW, Kanchuger M, Mangano CM, Newman M, Nussmeier N, Wolman R, Aggarwal A, Marschall K, Graham SH, Ley C. Adverse cerebral outcomes after coronary bypass surgery. New England Journal of Medicine 1996;335:1857–1863
  • Hogue ChW, Murphy SF, Schechtman KB, Dávila-Román VC. Risk factors for early or delayed stroke after cardiac surgery. Circulation 1999;100:642–647
  • Caplan LR, Hennerici M. Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Archives of Neurology 1998;55:1475–1482
  • Mangano DT. Cardiovascular morbidity and CABG surgery–a perspective: Epidemiology, costs, and potential therapeutic solutions. Journal of Cardiac Surgery 1995;10:366–368
  • Mahanna EP, Blumenthal JA, White WD, Croughwell ND, Clancy CP, Smith LR, Newman MF. Defining neuropsycological dysfunction after coronary bypass grafting. Annals of Thoracic Surgery 1996;61:1342–1347
  • Romeo MJ, Espina V, Lowenthal M, Espina BH, Petricoin EF, 3rd, Liotta LA. CSF proteome: A protein repository for potential biomarker identification. Expert Review of Proteomics 2005;2:57–70
  • Michetti F, Massaro A, Murazio M. The nervous system-specific S-100 antigen in cerebrospinal fluid of multiple sclerosis patients. Neuroscience Letters 1979;11:171–175
  • Aglid KG, Yang Q, Hamberger A, Bergman S, Widerberg A, Danielsen N. S-100beta stimulates neurite outgrowth in the rat sciatic nerve grafted with acellular muscle transplants. Brain Research 1997;753:196–201
  • Van Eldik LJ, Wainwright MS. The Janus face of glial-derived S100B: Beneficial and detrimental functions in the brain. Restorative Neurology & Neuroscience 2003;21:97–108
  • Steiner J, Bogerts B, Schroeter ML, Bernstein HG. S100B protein in neurodegenerative disorders. Clinical Chemistry & Laboratory Medicine 2011;49:409–424
  • Rodríguez-Rodríguez A, Egea-Guerrero JJ, Ruiz de Azúa-López Z, Murillo-Cabezas F. Biomarkers of vasospasm development and outcome in aneurysmal subarachnoid hemorrhage. Journal of Neurological Science 2014;341:119–127
  • Kapural M, Krizanac-Bengez L, Barnett G, Perl J, Masaryk T, Apollo D, Rasmussen P, Mayberg MR, Janigro D. Serum S-100beta as a possible marker of blood–brain barrier disruption. Brain Research 2002;940:102–104
  • Rodrıguez-Rodrıguez A, Egea-Guerrero JJ, Leon-Justel A, Gordillo-Escobar E, Revuelto-Rey J, Vilches-Arenas A, et al. Role of S100B protein in urine and serum as an early predictor of mortality after severe traumatic brain injury in adults. Clinica Chimica Acta 2012;414:228–233
  • Egea-Guerrero JJ, Revuelto-Rey J, Murillo-Cabezas F, Muñoz-Sánchez MA, Vilches-Arenas A, Sánchez-Linares P, Domínguez-Roldón JM, León-Carrión J. Accuracy of the S100β protein as a marker of brain damage in traumatic brain injury. Brain Injury 2012;26:76–82
  • Kleindienst A, Schmidt C, Parsch H, Emtmann I, Xu Y, Buchfelder M. The passage of S100B from brain to blood is not specifically related to the blood–brain barrier integrity. Cardiovascular Psychiatry & Neurology 2010;2010:801295
  • Jonsson H, Johnsson P, Birch-Iensen M, Alling C, Westaby S, Blomguist S. S100B as a predictor of size and outcome of stroke after cardiac surgery. Annals of Thoracic Surgery 2001;71:1433–1437
  • Herrmann M, Ebert AD, Galazky I, Wunderlinch MT, Kunz WS, Huth C. Neurobehavioral outcome prediction after cardiac surgery: Role of neurobiochemical markers of damage to neuronal and glial brain tissue. Stroke 2000;31:645–650
  • Iskesen I, Kurdal AT, Yilmaz H, Cerrahoglu M, Sirin BH. Sleep disturbances after cardiac surgery with or without elevated S100B levels. Acta Cardiologica 2009;64:741–746
  • Kilminster S, Treasure T, McMillan T, Holt DW. Neuropsychological change and S-100 protein release in 130 unselected patients undergoing cardiac surgery. Stroke 1999;30:1869–1874
  • Georgiadis D, Berger A, Kowatschev E, Lautenschläger C, Börner A, Lindner A, Schulte-Mattler W, Zerkowski HR, Zierz S, Deufel T. Predictive value of S-100beta and neuron-specific enolase serum levels for adverse neurologic outcome after cardiac surgery. Journal of Thoracic & Cardiovascular Surgery 2000;119:138–147
  • Krnjak L, Trunk P, Gersak B, Osredkar J. Correlation of serum S100B concentration with hospital stay in patients undergoing CABG. Acta Clinica Croatica 2008;47:221–226
  • Westaby S, Saatvedt K, White S, Katsumata T, van Oeveren W, Bhatnagar NK, Brown S, Halligan PW. Is there a relationship between serum S-100beta protein and neuropsychologic dysfunction after cardiopulmonary bypass? Journal of Thoracic & Cardiovascular Surgery 2000;119:132–137
  • Jonsson H. S100B and cardiac surgery: Possibilities and limitations. Restorative Neurology & Neuroscience 2003;21:151–157
  • Zellner T, Gärtner R, Schopohl J, Angstwurm M. NSE and S-100B are not sufficiently predictive of neurologic outcome after therapeutic hypothermia for cardiac arrest. Resuscitation 2013;84:1382–1386
  • Pelinka LE, Szalay L, Jafarmadar M, Schidhammer R, Redl H, Bahrami S. Circulating S100B is increased after bilateral femur fracture without brain injury in the rat. British Journal of Anaesthesia 2003;91:595–597
  • Fazio V, Bhudia SK, Marchi N, Aumayr B, Janigro D. Peripheral Detection of S100B during cardiothoracic surgery: What are we really measuring? Annals of Thoracic Surgery 2004;78:46–53
  • Einav S, Itshayek E, Kark JD, Ovadia H, Weiniger CF, Shoshan Y. Serum S100B levels after meningioma surgery: A comparison of two laboratory assays. BMC Clinical Pathology 2008;8:9
  • Mitzen EJ, Barron KD, Koeppen AH, Harris HW. Enzyme activity of human central nervous system myelin. Brain Research 1974;68:123–131
  • Marangos PJ, Parma AM, Goodwin FK. Functional properties of neuronal and glial isoenzymes of brain enolase. Journal of Neurochemistry 1978;31:727–732
  • Tapia FJ, Polak JM, Barbosa AJ, Bloom SR, Marangos PJ, Dermody C, Pearse AG. Neuron-specific enolase is produced by neuroendocrine tumours. Lancet 1981;1:808–811
  • Butterfield DA, Lange ML. Multifunctional roles of enolase in Alzheimer's disease brain: Beyond altered glucose metabolism. Journal of Neurochemistry 2009;111:915–933
  • Anand N, Stead LG. Neuron-specific enolase as a marker for acute ischemic stroke: A systematic review. Cerebrovascular Disease 2005;20:213–219
  • Sulaj M, Saniova B, Drobna E, Schudichova J. Serum neuron specific enolase and malondialdehyde in patients after out-of-hospital cardiac arrest. Cellular & Molecular Neurobiology 2009;29:807–810
  • Ishida K, Gohara T, Kawata R, Ohtake K, Morimoto Y, Sakabe T. Are serum S100beta proteins and neuron-specific enolase predictors of cerebral damage in cardiovascular surgery? Journal of Cardiothoracic & Vascular Anesthesia 2003;17:4–9
  • Tiainen M, Roine RO, Pettila V, Takkunen O. Serum neuron-specific enolase and S-100B protein in cardiac arrest patients treated with hypothermia. Stroke 2003;34:2881–2886
  • Dworschak M, Franz M, Czerny M, Gorlitzer M, Blaschek M, Grubhofer G, Haider W. Release of neuronspecific enolase and S100 after implantation of cardioverters/defibrillators. Critical Care Medicine 2003;31:2085–2089
  • Gao F, Harris DN, Sapsed-Byrne S. Time course of neuronespecific enolase and S-100 protein release during and after coronary artery bypass grafting. British Journal of Anaesthesia 1999;82:266–267
  • Gu XH1, Zhang G, Zhang XQ, Song Y, Wang T, Li SX. Clinical values of detection of serum levels of S100B and NSE in diagnosis of brain injuries at early period after cardiopulmonary bypass. Zhonghua Yi Xue Za Zhi 2007;87:975–977
  • Liu Y, Xu Y, Li DZ, Shi Y, Ye M. Comparison of S100B and NSE between cardiac surgery and interventional therapy for children. Pediatric Cardiology 2009;30:893–897
  • Rasmussen LS, Christiansen M, Eliasen K, Sander-Jensen K, Moller JT. Biochemical markers for brain damage after cardiac surgery—time profile and correlation with cognitive dysfunction. Acta Anaesthesiologica Scandinavica 2002;46:547–551
  • Stolz E, Gerriets T, Kluge A, Klövekorn WP, Kaps M, Bachmann G. Diffusion-weighted magnetic resonance imaging and neurobiochemical markers after aortic valve replacement: Implications for future neuroprotective trials? Stroke 2004;35:888–892
  • Middeldorp J, Hol EM. GFAP in health and disease. Progress in Neurobiology 2011;93:421–443
  • Kasantikul V, Shuangshoti S. Positivity to glial fibrillary acidic protein in bone, cartilage, and chordoma. Journal of Surgical Oncology 1989;41:22–26
  • Riol H, Tardy M, Rolland B, Lévesque G, Murthy MR. Detection of the peripheral nervous system (PNS)-type glial fibrillary acidic protein (GFAP) and its mRNA in human lymphocytes. Journal of Neuroscience Research 1997;48:53–62
  • Hainfellner JA, Voigtländer T, Ströbel T, Mazal PR, Maddalena AS, Aguzzi A, Budka H. Fibroblasts can express glial fibrillary acidic protein (GFAP) in vivo. Journal of Neuropathology & Experimental Neurology 2001;60:449–461
  • Raman JS, Kochi K, Morimatsu H, Buxton B, Bellomo R. Severe ischemic early liver injury after cardiac surgery. Annals of Thoracic Surgery 2002;74:1601–1606
  • Cechetti F, Pagnussat AS, Worm PV, Elsner VR, Ben J, da Costa MS, Mestriner R, Weis SN, Netto CA. Chronic brain hypoperfusion causes early glial activation and neuronal death, and subsequent long-term memory impairment. Brain Research Bulletin 2012;87:109–116
  • Schiff L, Hadker N, Weiser S, Rausch C. A literature review of the feasibility of glial fibrillary acidic protein as a biomarker for stroke and traumatic brain injury. Molecular Diagnosis & Therapy 2012;16:79–92
  • Brunetti MA, Jennings JM, Easley RB, Bembea M, Brown A, Heitmiller E, Schwartz JM, Brady KM, Vricella LA, Everett AD. Glial fibrillary acidic protein in children with congenital heart disease undergoing cardiopulmonary bypass. Cardiology in the Young 2013;11:1–9
  • Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW. A protein factor essential for microtubule assembly. Proceedings of the National Academy of Science USA 1975;72:1858–1862
  • Blennow K, Hampel H. CSF markers for incipient Alzheimer’s disease. Lancet Neurology 2003;2:605–613
  • Palotás A, Reis HJ, Bogáts G, Babik B, Racsmány M, Engvau L, Kecskeméti E, Juhász A, Vieira LB, Teixeira AL, Mukhamedyarovi MA, Rizvanov AA, Yalvaç ME, Guimarães MM, Ferreira CN, Zefirov AL, Kiyasov AP, Wang L, Janka Z, Kálmán J. Coronary artery bypass surgery provokes Alzheimer's disease-like changes in the cerebrospinal fluid. Journal of Alzheimers Disease 2010;21:1153–1164
  • Planel E, Richter KE, Nolan CE, Finley JE, Liu L, Wen Y, Krishnamurthy P, Herman M, Wang L, Schachter JB, Nelson RB, Lau LF, Duff KE. Anaesthesia leads to tau hyperphosphorylation through inhibition of phosphatase activity by hypothermia. Journal of Neuroscience 2007;27:3090–3097
  • Wen Y, Yang S, Liu R, Brun-Zinkernagel AM, Koulen P, Simpkins JW. Transient cerebral ischemia induces aberrant neuronal cell cycle re-entry and Alzheimer’s diseaselike tauopathy in female rats. Journal of Biol Chem 2004; 279:22684–22692
  • Kawata M, Takamoto S, Kitahori K, Tsukihara H, Morota T, Ono M, Motomura N, Murakami A, Suematsu Y. Erythropoietin protects the central nervous system during prolonged hypothermic circulatory arrest: An experimental study in a canine model. Journal of Thoracic & Cardiovascular Surgery 2006;131:1331–1337
  • Ramlawi B, Rudolph JL, Mieno S, Khabbaz K, Sodha NR, Boodhwani M, Levkoff SE, Marcantonio ER, Sellke FW. Serologic markers of brain injury and cognitive function after cardiopulmonary bypass. Annals of Surgery 2006;244:593–601
  • Reinsfelt B, Ricksten SE, Zetterberg H, Blennow K, Fredén-Lindgvist J, Westerlind A. Cerebrospinal fluid markers of brain injury, inflammation, and blood-brain barrier dysfunction in cardiac surgery. Annals of Thoracic Surgery 2012;94:549–555
  • Dzwonek J, Rylski M, Kaczmarek L. Matrix metalloproteinases and their endogenous inhibitors in neuronal physiology of the adult brain. FEBS Letters 2004;567:129–135
  • Castellanos M, Leira R, Serena J, Pumar JM, Lizasoain I, Castillo J, Dávalos A. Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke 2003;34:40–46
  • Sood R, Yang Y, Taheri S, Candelario-Jalil E, Estrada EY, Walker EJ, Thompson J, Rosenberg GA. Increased apparent diffusion coefficients on MRI linked with matrix metalloproteinases and oedema in white matter after bilateral carotid artery occlusion in rats. Journal of Cerebral Blood Flow & Metabolism 2009;29:308–316
  • Higashida T, Kreipke CW, Rafols JA, Peng C, Schafer S, Schafer P, Ding JY, Dornbos D 3rd, Li X, Guthikonda M, Rossi NF, Ding Y. The role of hypoxia-inducible factor-1alpha, aquaporin-4, and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after traumatic brain injury. Journal of Neurosurgery 2011;114:92–101
  • Shigemori Y, Katayama Y, Mori T, Maeda T, Kawamata T. Matrix metalloproteinase-9 is associated with blood-brain barrier opening and brain edema formation after cortical contusion in rats. Acta Neurochirurgica Supplement 2006;96:130–133
  • Sokal A, Zembala M, Radomski A, Kocher A, Pacholewicz J, Los J, Jedrzejczyk E, Zembala M, Radomski M. A differential release of matrix metalloproteinases 9 and 2 during coronary artery bypass grafting and off-pump coronary artery bypass surgery. Journal of Thoracic & Cardiovascular Surgery 2009;137:1218–1224
  • Paśnik J, Cywińska-Bernas A, Moll J, Moll J, Sysa A, Zeman K. Alterations of metalloproteinases and their inhibitors concentrations in peripheral blood in children with congenital heart disease undergoing cardiac surgery with cardiopulmonary bypass. Przeglad Lekarski 2009;66:359–364
  • Joffe AR, Schulz C, Rosychuk RJ, Dyck J, Rebeyka IM, Ross DB, Schulz R, Cheung PY. Plasma matrix metalloproteinases in neonates having surgery for congenital heart disease. Heart International 2009;30:4–e4
  • Kon Y, Endoh D, Iwanaga T. Expression of protein gene product 9.5, a neuronal ubiquitin C-terminal hydrolase, and its developing change in sertoli cells of mouse testis. Molecular Reproduction & Development 1999;54:333–341
  • Hurst-Kennedy J, Chin LS, Li L. Ubiquitin C-terminal hydrolase l1 in tumorigenesis. Biochemistry Research International 2012;2012:123706
  • Choi J, Levey AI, Weintraub ST, Rees HD, Gearing M, Chin LS, Li L. Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson's and Alzheimer's diseases. Journal of Biological Chemistry 2004;279:13256–13264
  • Liu MC, Akinyi L, Scharf D, Mo J, Larner SF, Muller U, Oli MW, Zheng W, Kobeissy F, Papa L, Lu XC, Dave JR, Tortella FC, Hayes RL, Wang KK. Ubiquitin C-terminal hydrolase-L1 as a biomarker for ischemic and traumatic brain injury in rats. European Journal of Neuroscience 2010;31:722–732
  • Arnaoutakis GJ, George TJ, Wang KK, Wilson MA, Allen JG, Robinson CW, Haggerty KA, Weiss ES, Blue ME, Talbot CC Jr, Troncoso JC, Johnston MV, Baumgartner WA. Serum levels of neuron-specific UCHL1 predict brain injury in a canine model of hypothermic circulatory arrest. Journal of Thoracic & Cardiovascular Surgery 2011;142:902–990
  • Siman R, Roberts VL, McNeil E, Dang A, Bavaria JE, Ramchandren S, McGarvey M. Biomarker evidence for mild central nervous system injury after surgically-induced circulation arrest. Brain Research 2008;1213:1–11
  • Miller CC, Ackerley S, Brownlees J, Grierson AJ, Jacobsen NJ, Thornhill P. Axonal transport of neurofilaments in normal and disease states. Cellular & Molecular Life Science 2002;59:323–330
  • Al-Chalabi A, Miller CCJ. Neurofilaments and neurological disease. Bioessays 2003;25:346–355
  • Shaw G, Yang C, Ellis R, Anderson K, Parker Mickle J, Scheff S, Pike B, Anderson DK, Howland DR. Hyperphosphorylated neuro- filament NF-H is a serum biomarker of axonal injury. Biochemical & Biophysical Research Communications 2005;336:1268–1277
  • Florio P, Abella RF, de la Torre T, Giamberti A, Luisi S, Butera G, Cazzaniga A, Frigiola A, Petraglia F, Gazzolo D. Perioperative activin A concentrations as a predictive marker of neurologic abnormalities in children after open heart surgery. Clinical Chemistry 2007;53:982–985
  • Florio P, Abella R, Marinoni E, Di Iorio R, Letizia C, Meli M, de la Torre T, Petraglia F, Cazzaniga A, Giamberti A, Frigiola A, Gazzolo D. Adrenomedullin blood concentrations in infants subjected to cardiopulmonary bypass: Correlation with monitoring parameters and prediction of poor neurological outcome. Clinical Chemistry 2008;54:202–206
  • Sanchez-de-Toledo J, Chrysostomou C, Munoz R, Lichtenstein S, Sao-Avilés CA, Wearden PD, Morell VO, Clark RS, Toney N, Bell MJ. Cerebral regional oxygen saturation and serum neuromarkers for the prediction of adverse neurologic outcome in pediatric cardiac surgery. Neurocritical Care 2014;21:133–139

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.