156
Views
13
CrossRef citations to date
0
Altmetric
Original Article

Effect of ZnCl2 and Chelation of Zinc Ions by N,N-Diethyldithiocarbamate (DEDTC) on the ERG b-Wave Amplitude from the Isolated Superfused Vertebrate Retina

, , , , , , & show all
Pages 322-334 | Received 27 May 2009, Accepted 24 Nov 2009, Published online: 07 Apr 2010

REFERENCES

  • Grahn BH, Paterson PG, Gottschall-Pass KT, et al. Zinc and the eye. J Am Coll Nutr. 2001;20:106–118.
  • Aggett PJ, Comerford JG. Zinc and human health. Nutr Rev. 1995:53:S16–S22.
  • Karcioglu ZA. Zinc in the eye. Surv Ophthalmol. 1982;27:114–122.
  • Newsome DA, Rothman RJ. Zinc uptake in vitro by human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1987;28:1795–1799.
  • Paterson PG, Grahn BH, Gottschall-Pass KT, et al. Postnatal deficiencies of zinc and taurine alter electroretinograms, oscillatory potentials and morphology of the rat retina. Nutri Neurosci. 1999;2:175–189.
  • Leure-duPree AE. Electron-opaque inclusions in the rat retinal pigment epithelium after treatment with chelators of zinc. Invest Ophthalmol Vis Sci. 1981;21:1–9.
  • Leure-duPree AE, McClain CJ. The effect of severe zinc deficiency on the morphology of the rat retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1982;23:425–434.
  • Leure-duPree AE, Bridges CD. Changes in retinal morphology and vitamin A metabolism as a consequence of decreased zinc availability. Retina. 1982;2:294–302.
  • Leure-duPree AE. Vascularization of the rat cornea after prolonged zinc deficiency. Anat Rec. 1986;216:27–32.
  • Weiergräber M, Kamp MA, Radhakrishnan K, et al. The Cav2.3 voltage-gated calcium channel in epileptogenesis. Shedding new light on an enigmatic channel. Neurosci Biobehav Rev. 2006;30:1122–1144.
  • Kang HW, Park JY, Jeong SW, et al. A molecular determinant of nickel inhibition in Cav3.2 T-type calcium channels. J Biol Chem. 2006;281:4823–4830.
  • Nelson MT, Todorovic SM, Perez-Reyes E. The role of T-type calcium channels in epilepsy and pain. Curr Pharm Des. 2006;12:2189–2197.
  • Zamponi GW, Bourinet E, Snutch TP. Nickel block of a family of neuronal calcium channels: Subtype- and subunit-dependent action at multiple sites. J Membrane Biol. 1996;151:77–90.
  • Lee JH, Gomora JC, Cribbs LL, et al. Nickel block of three cloned T-type calcium channels: Low concentrations selectively block a1H. Biophys J. 1999;77:3034–3042.
  • Lüke M, Henry M, Lingohr T, et al. A Ni2+-sensitive component of the ERG-b-wave from the isolated bovine retina is related to E-type voltage-gated Ca2+ channels. Graefes Arch Clin Exp Ophthalmol. 2005;243:933–941.
  • Siapich SA, Banat M, Albanna W, Hescheler J, et al. Antagonists of ionotropic GABA-receptors impair the NiCl2 mediated stimulation of the ERG b-wave amplitude from the isolated superfused vertebrate retina. Acta Ophthalmol. 2009; 87:854–856.
  • Sickel W. Experimentelle Elektroretinographie der Metallosen. In: H. Neubauer (Ed.). Intraocularer Fremdkörper und Metallose. München: Bergmann-Verlag, 1977; pp. 111–118.
  • Xu HP, Zhao JW, Yang XL. Cholinergic and dopaminergic amacrine cells differentially express calcium channel subunits in the rat retina. Neuroscience. 2003;118:763–768.
  • Mehrke G, Pereverzev A, Grabsch H, et al. Receptor mediated modulation of recombinant neuronal class E calcium channels. FEBS Lett. 1997;408:261–270.
  • Leroy J, Pereverzev A, Vajna R, et al. Ca2+-sensitive regulation of E-type Ca2+ channel activity depends on an arginine rich region in the cytosolic II-III loop. Eur J Neurosci. 2003;18:841–855.
  • Klöckner U, Pereverzev A, Leroy J, et al. The cytosolic II-III loop of Cav2.3 provides an essential determinant for the phorbol ester-mediated stimulation of E-type Ca2+ channel activity. Eur J Neurosci. 2004;19:2659–2668.
  • Lüke M, Weiergräber M, Brand C, et al. The isolated perfused bovine retina—A sensitive tool for pharmacological research on retinal function. Brain Res Protoc. 2005;16:27–36.
  • Hanawa I, Tateishi T. The effect of aspartate on the electroretinogram of the vertebrate retina. Experientia. 1970;26:1311–1312.
  • Gottschall-Pass KT, Grahn BH, Gorecki DK, et al. Oscillatory potentials and light microscopic changes demonstrate an interaction between zinc and taurine in the developing rat retina. J Nutr. 1997;127:1206–1213.
  • Gottschall-Pass KT, Grahn BH, Gorecki DKJ, et al. Depression of the electroretinogram in rats deficient in zinc and taurine during prenatal and postnatal life. J Nutr Biochem. 1998;9:621–628.
  • Dominguez MI, Blasco-Ibanez JM, Crespo C, et al. Zinc chelation during non-lesioning overexcitation results in neuronal death in the mouse hippocampus. Neuroscience. 2003;116:791–806.
  • Blasco-Ibanez JM, Poza-Aznar J, Crespo C, et al. Chelation of synaptic zinc induces overexcitation in the hilar mossy cells of the rat hippocampus. Neurosci Lett. 2004;355:101–104.
  • Dominguez MI, Blasco-Ibanez JM, Crespo C, et al. Neural overexcitation and implication of NMDA and AMPA receptors in a mouse model of temporal lobe epilepsy implying zinc chelation. Epilepsia. 2006;47:887–899.
  • Foresti ML, Arisi GM, Fernandes A, et al. Chelatable zinc modulates excitability and seizure duration in the amygdala rapid kindling model. Epilepsy Res. 2008;79:166–172.
  • Kang HW, Moon HJ, Joo SH, et al. Histidine residues in the IS3-IS4 loop are critical for nickel-sensitive inhibition of the Cav2.3 calcium channel. FEBS Lett. 2007;581:5774–5780.
  • Schneider T, Wei X, Olcese R, et al. Molecular analysis and functional expression of the human type E a1 subunit. Receptors & Channels. 1994;2:255–270.
  • Frederickson CJ, Koh JY, Bush AI. The neurobiology of zinc in health and disease. Nat Rev Neurosci. 2005;6:449–462.
  • Sun HS, Hui K, Lee DW, et al. Zn2+ sensitivity of high- and low-voltage activated calcium channels. Biophys J. 2007;93:1175–1183.
  • Nelson MT, Woo J, Kang HW, et al. Reducing agents sensitize C-type nociceptors by relieving high-affinity zinc inhibition of T-type calcium channels. J Neurosci. 2007;27:8250–8260.
  • Barnes S, Kelly ME. Calcium channels at the photoreceptor synapse. Adv Exp Med Biol. 2002;514:465–476.
  • Wu SM, Qiao X, Noebels JL, et al. Localization and modulatory actions of zinc in vertebrate retina. Vision Res. 1993;33:2611–2616.
  • Chappell RL, Anastassov I, Lugo P, et al. Zinc-mediated feedback at the synaptic terminals of vertebrate photoreceptors. Exp Eye Res. 2008;87:394–397.
  • Redenti S, Ripps H, Chappell RL. Zinc release at the synaptic terminals of rod photoreceptors. Exp Eye Res. 2007;85:580–584.
  • Mochizuki K, Murase H, Imose M, et al. Improvement of scotopic electroretinograms and night blindness with recovery of serum zinc levels. Jpn J Ophthalmol. 2006;50:532–536.
  • Redenti S, Chappell RL. Zinc chelation enhances the zebrafish retinal ERG b-wave. Biol Bull. 2002;203:200–202.
  • Redenti S, Chappell RL. Zinc chelation enhances the sensitivity of the ERG b-wave in dark-adapted skate retina. Biol Bull. 2003;205:213–214.
  • Kim SY, Kwak JS, Shin JP, et al. The protection of the retina from ischemic injury by the free radical scavenger EGb 761 and zinc in the cat retina. Ophthalmologica. 1998;212:268–274.
  • Jacobson SG, Meadows NJ, Keeling PW, et al. (1986) Rod mediated retinal dysfunction in cats with zinc depletion: Comparison with taurine depletion. Clin Sci (Lond). 1986;71:559–564.
  • Stoltenberg M, Bruhn M, Sondergaard C, et al. Immersion autometallographic tracing of zinc ions in Alzheimer beta-amyloid plaques. Histochem Cell Biol. 2005;123:605–611.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.