309
Views
7
CrossRef citations to date
0
Altmetric
Original Article

miR-124, miR-125b, let-7 and Vesicle Transport Proteins in Squid Lenses in L. pealei

, &
Pages 388-394 | Received 27 Apr 2011, Accepted 23 Oct 2011, Published online: 18 Jan 2012

REFERENCES

  • Lo WK, Wen XJ, Zhou CJ. Microtubule configuration and membranous vesicle transport in elongating fiber cells of the rat lens. Exp Eye Res. 2003;77:615–626.
  • Zhou CJ, Lo WK. Association of clathrin, AP-2 adaptor and actin cytoskeleton with developing interlocking membrane domains of lens fibre cells. Exp Eye Res. 2003;77:423–432.
  • Bitel CL, Perrone-Bizzozero NI, Frederikse PH. HuB/C/D, nPTB, REST4, and miR-124 regulators of neuronal cell identity are also utilized in the lens. Mol Vis. 2010;16:2301–2316.
  • Bitel CL, Nathan R, Wong P et al. Evidence that "brain-specific" FOX-1, FOX-2, and nPTB alternatively spliced isoforms are produced in the lens. Curr Eye Res. 2011;36:321–327.
  • Lunyak VV, Rosenfeld MG. No rest for REST: REST/NRSF regulation of neurogenesis. Cell. 2005;121:499–501.
  • Boutz PL, Stoilov P, Li Q et al. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev. 2007;21:1636–1652.
  • Coutinho-Mansfield GC, Xue Y, Zhang Y, Fu XD. PTB/nPTB switch: A post-transcriptional mechanism for programming neuronal differentiation. Genes Dev. 2007;21:1573–1577.
  • Makeyev EV, Zhang J, Carrasco MA, Maniatis T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell. 2007;27:435–448.
  • Makarev E, Spence JR, Del Rio-Tsonis K, Tsonis PA. Identification of microRNAs and other small RNAs from the adult newt eye. Mol Vis. 2006;12:1386–1391.
  • Edbauer D, Neilson JR, Foster KA et al. Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron. 2010;65:373–384.
  • Frederikse PH, Donnelly R, Partyka LM. miRNA and Dicer in the mammalian lens: Expression of brain-specific miRNAs in the lens. Histochem Cell Biol. 2006;126:1–8.
  • Le MT, Xie H, Zhou B et al. MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol Cell Biol. 2009;29:5290–5305.
  • Wulczyn FG, Smirnova L, Rybak A et al. Post-transcriptional regulation of the let-7 microRNA during neural cell specification. FASEB J. 2007;21:415–426.
  • Palakodeti D, Smielewska M, Graveley BR. MicroRNAs from the Planarian Schmidtea mediterranea: A model system for stem cell biology. RNA. 2006;12:1640–1649.
  • Pasquinelli AE, McCoy A, Jiménez E et al. Expression of the 22 nucleotide let-7 heterochronic RNA throughout the Metazoa: A role in life history evolution? Evol Dev. 2003;5:372–378.
  • Pasquinelli AE, Reinhart BJ, Slack F et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408:86–89.
  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294:853–858.
  • Lim LP, Lau NC, Garrett-Engele P et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433:769–773.
  • Mishima T, Mizuguchi Y, Kawahigashi Y, Takizawa T, Takizawa T. RT-PCR-based analysis of microRNA (miR-1 and -124) expression in mouse CNS. Brain Res. 2007;1131:37–43.
  • Arnold JM. On the occurrence of microtubules in the developing lens of the squid Loligo pealii. J Ultrastruct Res. 1966;14:534–539.
  • Arnold JM. Fine structure of the development of the cephalopod lens. J Ultrastruct Res. 1967;17:527–543.
  • Young JZ. The nervous system of Loligo. II. Suboesophageal centres. Philos Trans R Soc Lond, B, Biol Sci. 1976;274:101–167.
  • Bai F, Xi JH, Andley UP. Up-regulation of tau, a brain microtubule-associated protein, in lens cortical fractions of aged αA-, αB-, and αA/B-crystallin knockout mice. Mol Vis. 2007;13:1589–1600.
  • Frederikse PH, Yun E, Kao HT, Zigler JS Jr, Sun Q, Qazi AS. Synapsin and synaptic vesicle protein expression during embryonic and post-natal lens fiber cell differentiation. Mol Vis. 2004;10:794–804.
  • Sweeney AM, Des Marais DL, Ban YE, Johnsen S. Evolution of graded refractive index in squid lenses. J R Soc Interface. 2007;4:685–698.
  • Mandell JW, Czernik AJ, De Camilli P, Greengard P, Townes-Anderson E. Differential expression of synapsins I and II among rat retinal synapses. J Neurosci. 1992;12:1736–1749.
  • Sarasa M, Sorribas V, Terradoa1 J, Climent S, Palacios JM, Mengod G. Alzheimer β-amyloid precursor proteins display specific patterns of expression during embryogenesis. Mech Dev. 2000;94:233–236.
  • Arnold JM. Closure of the squid cornea: A muscular basis for embryonic tissue movement. J Exp Zool. 1984;232:187–195.
  • Daniel L, Gilbert WJ, Adelman Arnold, JM. Squid as experimental animals. 1990; Plenum Press, New York, NY.
  • Yang B, Lin H, Xiao J et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 2007;13:486–491.
  • Friedländer MR, Adamidi C, Han T et al. High-resolution profiling and discovery of planarian small RNAs. Proc Natl Acad Sci USA. 2009;106:11546–11551.
  • Takane K, Fujishima K, Watanabe Y et al. Computational prediction and experimental validation of evolutionarily conserved microRNA target genes in bilaterian animals. BMC Genomics. 2010;11:101.
  • Conaco C, Otto S, Han JJ, Mandel G. Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA. 2006;103:2422–2427.
  • Clark AM, Goldstein LD, Tevlin M, Tavaré S, Shaham S, Miska EA. The microRNA miR-124 controls gene expression in the sensory nervous system of Caenorhabditis elegans. Nucleic Acids Res. 2010;38:3780–3793.
  • Visvanathan J, Lee S, Lee B, Lee JW, Lee SK. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev. 2007;21:744–749.
  • Nakamura K, Maki N, Trinh A et al. miRNAs in newt lens regeneration: Specific control of proliferation and evidence for miRNA networking. PLoS ONE. 2010;5:e12058.
  • Tsuda L, Kaido M, Lim YM, Kato K, Aigaki T, Hayashi S. An NRSF/REST-like repressor downstream of Ebi/SMRTER/Su(H) regulates eye development in Drosophila. EMBO J. 2006;25:3191–3202.
  • Dallman JE, Allopenna J, Bassett A, Travers A, Mandel G. A conserved role but different partners for the transcriptional corepressor CoREST in fly and mammalian nervous system formation. J Neurosci. 2004;24:7186–7193.
  • Maiorano NA, Mallamaci A. Promotion of embryonic cortico-cerebral neuronogenesis by miR-124. Neural Dev. 2009;4:40.
  • Röttinger E, Besnardeau L, Lepage T. Expression pattern of three putative RNA-binding proteins during early development of the sea urchin Paracentrotus lividus. Gene Expr Patterns. 2006;6:864–872.
  • Davis MB, Sun W, Standiford DM. Lineage-specific expression of polypyrimidine tract binding protein (PTB) in Drosophila embryos. Mech Dev. 2002;111:143–147.
  • Robida MD, Singh R. Drosophila polypyrimidine-tract binding protein (PTB) functions specifically in the male germline. EMBO J. 2003;22:2924–2933.
  • Cartwright J Jr, Arnold JM. Intercellular bridges in the embryo of the Atlantic squid, Loligo pealei. I. Cytoplasmic continuity and tissue differentiation. J Embryol Exp Morphol. 1980;57:3–24.
  • Cartwright J Jr, Arnold JM. Intercellular bridges in the embryo of the Atlantic squid, Loligo pealei. II: Formation of the bridge. Cell Motil. 1981;1:455–468.
  • Hollenberg MJ, Wyse JP, Lewis BJ. Surface morphology of lens fibers from eyes of normal and microphthalmic (Browman) rats. Cell Tissue Res. 1976;167:425–438.
  • West JA, Sivak JG, Doughty MJ. Microscopical evaluation of the crystalline lens of the squid (Loligo opalescens) during embryonic development. Exp Eye Res. 1995;60:19–35.
  • Willekens B, Vrensen G, Jacob T, Duncan G. The ultrastructure of the lens of the cephalopod Sepiola: A scanning electron microscopic study. Tissue Cell. 1984;16:941–950.
  • Byers B, Porter KR. Oriented microtubules in elongating cells of the developing lens rudiment after induction. Proc Natl Acad Sci USA. 1964;52:1091–1099.
  • Jiménez CR, Eyman M, Lavina ZS et al. Protein synthesis in synaptosomes: A proteomics analysis. J Neurochem. 2002;81:735–744.
  • Kaplan BB, Lavina ZS, Gioio AE. Subcellular compartmentation of neuronal protein synthesis: New insights into the biology of the neuron. Ann N Y Acad Sci. 2004;1018:244–254.
  • Cox LJ, Hengst U, Gurskaya NG, Lukyanov KA, Jaffrey SR. Intra-axonal translation and retrograde trafficking of CREB promotes neuronal survival. Nat Cell Biol. 2008;10:149–159.
  • Gioio AE, Lavina ZS, Jurkovicova D et al. Nerve terminals of squid photoreceptor neurons contain a heterogeneous population of mRNAs and translate a transfected reporter mRNA. Eur J Neurosci. 2004;20:865–872.
  • Wang DO, Martin KC, Zukin RS. Spatially restricting gene expression by local translation at synapses. Trends Neurosci. 2010;33:173–182.
  • Faulkner-Jones B, Zandy AJ, Bassnett S. RNA stability in terminally differentiating fibre cells of the ocular lens. Exp Eye Res. 2003;77:463–476.
  • Wen Y, Shi ST, Unakar NJ, Bekhor I. Crystallin mRNA concentrations and distribution in lens of normal and galactosemic rats. Implications in development of sugar cataracts. Invest Ophthalmol Vis Sci. 1991;32:1638–1647.
  • Bloemendal H, Benedetti EL, Ramaekers F, Dunia I. The lens cytoskeleton. Intermediate-sized filaments, their biosynthesis and association with plasma membranes. Mol Biol Rep. 1981;7:167–168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.