150
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Optimization and Application of a Reverse Transcriptase Polymerase Chain Reaction to Determine the Bacterial Viability in Infectious Endophthalmitis

, , , , &
Pages 1114-1120 | Received 23 Apr 2012, Accepted 14 Jun 2012, Published online: 03 Jul 2012

REFERENCES

  • Aaberg TM Jr, Flynn HW Jr, Schiffman J et al. Nosocomial acute-onset postoperative endophthalmitis survey. A 10-year review of incidence and outcomes. Ophthalmology 1998;105:1004–1010.
  • Abu el-Asrar AM, Al-Amro SA, Al-Mosallam AA et al. Post-traumatic endophthalmitis: causative organisms and visual outcome. Eur J Ophthalmol 1999;9:21–31.
  • Scott IU, Flynn HW Jr, Feuer W et al. Endophthalmitis associated with microbial keratitis. Ophthalmology 1996;103:1864–1870.
  • Therese KL, Bartell JG, Bagyalakshmi R et al. Aetilogy of endophthalmitis from culture negative specimens. Invest Ophthalmol Vis Sci 2006;47:1890.
  • Therese KL, Anand AR, Madhavan HN. Polymerase chain reaction in the diagnosis of bacterial endophthalmitis. Br J Ophthalmol 1998;82:1078–1082.
  • Sowmya P, Madhavan HN. Diagnostic utility of polymerase chain reaction on intraocular specimens to establish the etiology of infectious endophthalmitis. Eur J Ophthalmol 2009;19:812–817.
  • Jambulingam M, Parameswaran SK, Lysa S et al. A study on the incidence, microbiological analysis and investigations on the source of infection of postoperative infectious endophthalmitis in a tertiary care ophthalmic hospital: an 8-year study. Indian J Ophthalmol 2010;58:297–302.
  • Bagyalakshmi R, Madhavan HN, Therese KL. Development and application of multiplex polymerase chain reaction for the etiological diagnosis of infectious endophthalmitis. J Postgrad Med 2006;52:179–182.
  • Bispo PJ, Höfling-Lima AL, Pignatari AC. Molecular biology applied to the laboratory diagnosis of bacterial endophthalmitis. Arq Bras Oftalmol 2009;72:734–740.
  • Chiquet C, Cornut PL, Benito Y et al.; French Institutional Endophthalmitis Study Group. Eubacterial PCR for bacterial detection and identification in 100 acute postcataract surgery endophthalmitis. Invest Ophthalmol Vis Sci 2008;49:1971–1978.
  • Seal D, Reischl U, Behr A et al.; ESCRS Endophthalmitis Study Group. Laboratory diagnosis of endophthalmitis: comparison of microbiology and molecular methods in the European Society of Cataract & Refractive Surgeons multicenter study and susceptibility testing. J Cataract Refract Surg 2008;34:1439–1450.
  • Chiquet C, Maurin M, Thuret G et al.; French Institutional Endophthalmitis Study (FRIENDS) group. Analysis of diluted vitreous samples from vitrectomy is useful in eyes with severe acute postoperative endophthalmitis. Ophthalmology 2009;116:2437–41.e1.
  • Okhravi N, Adamson P, Lightman S. Use of PCR in endophthalmitis. Ocul Immunol Inflamm 2000;8:189–200.
  • Okhravi N, Adamson P, Carroll N et al. PCR-based evidence of bacterial involvement in eyes with suspected intraocular infection. Invest Ophthalmol Vis Sci 2000;41:3474–3479.
  • Knox CM, Cevallos V, Margolis TP et al. Identification of bacterial pathogens in patients with endophthalmitis by 16S ribosomal DNA typing. Am J Ophthalmol 1999;128:511–512.
  • Müller M, Ewert I, Hansmann F et al. Detection of Treponema pallidum in the vitreous by PCR. Br J Ophthalmol 2007;91:592–595.
  • Sugita S, Shimizu N, Watanabe K et al. Diagnosis of bacterial endophthalmitis by broad-range quantitative PCR. Br J Ophthalmol 2011;95:345–349.
  • Chan TK, Sun X, Chee ASP et al. Nested PCR and RT-PCR Application in rapid diagnosis of infectious endophthalmitis. Inv Ophthalmol Vis Sci 2002;43:4432.
  • Goldschmidt P, Degorge S, Benallaoua D et al. New test for the diagnosis of bacterial endophthalmitis. Br J Ophthalmol 2009;93:1089–1095.
  • Melo GB, Bispo PJ, Campos Pignatari AC et al. Real-time polymerase chain reaction test to discriminate between contamination and intraocular infection after cataract surgery. J Cataract Refract Surg 2011;37:1244–1250.
  • Bispo PJ, de Melo GB, Hofling-Lima AL et al. Detection and gram discrimination of bacterial pathogens from aqueous and vitreous humor using real-time PCR assays. Invest Ophthalmol Vis Sci 2011;52:873–881.
  • Andrej T, Kerry EP, James MS et al. Effect of gamma irradiation on viability and DNA of Staphylococcus epidermidis and Escherichia coli. Journal of Medical Microbiology 2006;55:1271–1275.
  • Churruca E, Girbau C, Martínez I et al. Detection of Campylobacter jejuni and Campylobacter coli in chicken meat samples by real-time nucleic acid sequence-based amplification with molecular beacons. Int J Food Microbiol 2007;117:85–90.
  • Yaron S, Matthews KR. A reverse transcriptase-polymerase chain reaction assay for detection of viable Escherichia coli O157:H7: investigation of specific target genes. J Appl Microbiol 2002;92:633–640.
  • Lavania M, Katoch K, Katoch VM et al. Detection of viable Mycobacterium leprae in soil samples: insights into possible sources of transmission of leprosy. Infect Genet Evol 2008;8:627–631.
  • Lucy ED, Mark DP, Kathy W et al. Eisenach, Measurement of Sputum Mycobacterium tuberculosis Messenger RNA as a Surrogate for Response to Chemotherapy. Am J Respir Crit Care Med 1999;160:203–210.
  • Keer JT, Birch L. Molecular methods for the assessment of bacterial viability. J Microbiol Methods 2003;53:175–183.
  • Aarthi P, Harini R, Sowmiya M et al. Identification of bacteria in culture negative and polymerase chain reaction (PCR) positive intraocular specimen from patients with infectious endopthalmitis. J Microbiol Methods 2011;85:47–52.
  • Frank S, Ante T, Raz Z et al. Structure of Functionally Activated Small Ribosomal Subunit at 3.3 A°Resolution. Cell, 2000;102:615–623.
  • Weisburg WG, Barns SM, Pelletier DA et al. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703.
  • Coenye T, Vandamme P. Intragenomic heterogeneity between multiple 16S ribosomal RNA operons in sequenced bacterial genomes. FEMS Microbiol Lett 2003;228:45–49.
  • Jill E, Clarridge III. Impact of 16S rRNA Gene Sequence Diseases Analysis for Identification of Bacteria on Clinical Microbiology and Infectious diseases. Clin. Microbiol. Rev 2004;17 (4):840.
  • Paul JB, David D, Donald EW. Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. International Journal of Systematic Bacteriology 1998;48:317–320.
  • Schmidt TM, Relman DA. Phylogenetic identification of uncultured pathogens using ribosomal RNA sequences. Meth Enzymol 1994;235:205–222.
  • Gray JP, Herwig RP. Phylogenetic analysis of the bacterial communities in marine sediments. Appl Environ Microbiol 1996;62:4049–4059.
  • Bentsink L, Leone GO, van Beckhoven JR et al. Amplification of RNA by NASBA allows direct detection of viable cells of Ralstonia solanacearum in potato. J Appl Microbiol 2002;93:647–655.
  • Gabrielle ME, Vliet V, Schepers P et al.. Assessment of mycobacterial viability by RNA amplification. Antimicrob agents Chemother 1994;38:1959–1965.
  • Lahtinen SJ, Ahokoski H, Reinikainen JP et al. Degradation of 16S rRNA and attributes of viability of viable but nonculturable probiotic bacteria. Lett Appl Microbiol 2008;46:693–698.
  • Aellen S, Que YA, Guignard B et al. Detection of live and antibiotic-killed bacteria by quantitative real-time PCR of specific fragments of rRNA. Antimicrob Agents Chemother 2006;50:1913–1920.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.